import numpy as np import scipy.io import torch from pina.segment import Segment from pina.cube import Cube from pina.problem import TimeDependentProblem, Problem1D from pina.operators import grad def tmp_grad(output_, input_): return torch.autograd.grad( output_, input_.tensor, grad_outputs=torch.ones(output_.size()).to( dtype=input_.tensor.dtype, device=input_.tensor.device), create_graph=True, retain_graph=True, allow_unused=True)[0] class Burgers1D(TimeDependentProblem, Problem1D): input_variables = ['x', 't'] output_variables = ['u'] spatial_domain = Cube([[-1, 1]]) temporal_domain = Cube([[0, 1]]) def burger_equation(input_, output_): grad_u = grad(output_['u'], input_) grad_x, grad_t = tmp_grad(output_['u'], input_).T gradgrad_u_x = grad(grad_u['x'], input_) grad_xx = tmp_grad(grad_x, input_)[:, 0] return grad_u['t'] + output_['u']*grad_u['x'] - (0.01/torch.pi)*gradgrad_u_x['x'] def nil_dirichlet(input_, output_): u_expected = 0.0 return output_['u'] - u_expected def initial_condition(input_, output_): u_expected = -torch.sin(torch.pi*input_['x']) return output_['u'] - u_expected conditions = { 'gamma1': {'location': Segment((-1, 0), (-1, 1)), 'func': nil_dirichlet}, 'gamma2': {'location': Segment(( 1, 0), ( 1, 1)), 'func': nil_dirichlet}, 'initia': {'location': Segment((-1, 0), ( 1, 0)), 'func': initial_condition}, 'D': {'location': Cube([[-1, 1],[0,1]]), 'func': burger_equation} }