import sys import numpy as np import torch import argparse from pina.pinn import PINN from pina.ppinn import ParametricPINN as pPINN from pina.label_tensor import LabelTensor from torch.nn import ReLU, Tanh, Softplus from problems.parametric_poisson import ParametricPoisson2DProblem as Poisson2D from pina.deep_feed_forward import DeepFeedForward from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh class myFeature(torch.nn.Module): """ Feature: sin(x) """ def __init__(self): super(myFeature, self).__init__() def forward(self, x): return torch.exp(- 2*(x[:, 0] - x[:, 2])**2 - 2*(x[:, 1] - x[:, 3])**2) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run PINA") group = parser.add_mutually_exclusive_group(required=True) group.add_argument("-s", "-save", action="store_true") group.add_argument("-l", "-load", action="store_true") parser.add_argument("id_run", help="number of run", type=int) parser.add_argument("features", help="extra features", type=int) args = parser.parse_args() feat = [myFeature()] if args.features else [] poisson_problem = Poisson2D() model = DeepFeedForward( layers=[200, 40, 10], output_variables=poisson_problem.output_variables, input_variables=poisson_problem.input_variables+['mu1', 'mu2'], func=Softplus, extra_features=feat ) pinn = pPINN( poisson_problem, model, lr=0.0006, regularizer=1e-6, lr_accelerate=None) if args.s: pinn.span_pts(30, 'chebyshev', ['D']) pinn.span_pts(50, 'grid', ['gamma1', 'gamma2', 'gamma3', 'gamma4']) #pinn.plot_pts() pinn.train(10000, 10) pinn.save_state('pina.poisson_param') else: pinn.load_state('pina.poisson_param') #pinn.plot(40, torch.tensor([-0.8, -0.8])) #pinn.plot(40, torch.tensor([ 0.8, 0.8])) from smithers.io import VTUHandler from scipy.interpolate import griddata import matplotlib matplotlib.use('GTK3Agg') import matplotlib.pyplot as plt res = 64 fname_minus = 'Poisson_param_08minus000000.vtu' param = torch.tensor([-0.8, -0.8]) pts_container = [] for mn, mx in [[-1, 1], [-1, 1]]: pts_container.append(np.linspace(mn, mx, res)) grids_container = np.meshgrid(*pts_container) unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T unrolled_pts = torch.cat([unrolled_pts, param.double().repeat(unrolled_pts.shape[0]).reshape(-1, 2)], axis=1) #unrolled_pts.to(dtype=self.dtype) unrolled_pts = LabelTensor(unrolled_pts, ['x1', 'x2', 'mu1', 'mu2']) Z_pred = pinn.model(unrolled_pts.tensor) data = VTUHandler.read(fname_minus) print(data['points'][:, :2].shape) print(data['point_data']['f_16'].shape) print(grids_container[0].shape) print(grids_container[1].shape) Z_truth = griddata(data['points'][:, :2], data['point_data']['f_16'], (grids_container[0], grids_container[1])) err = np.abs(Z_truth + Z_pred.tensor.reshape(res, res).detach().numpy()) plt.subplot(1, 3, 1) plt.pcolor(-Z_pred.tensor.reshape(res, res).detach()) plt.colorbar() plt.subplot(1, 3, 2) plt.pcolor(Z_truth) plt.colorbar() plt.subplot(1, 3, 3) plt.pcolor(err, vmin=0, vmax=0.009) plt.colorbar() plt.show() print(unrolled_pts.tensor.shape) with open('parpoisson_minus_plot.txt', 'w') as f_: f_.write('x y truth pred e\n') for (x, y), tru, pre, e in zip(unrolled_pts[:, :2], Z_truth.reshape(-1, 1), -Z_pred.tensor.reshape(-1, 1), err.reshape(-1, 1)): f_.write('{} {} {} {} {}\n'.format(x.item(), y.item(), tru.item(), pre.item(), e.item())) fname_plus = 'Poisson_param_08plus000000.vtu' param = torch.tensor([0.8, 0.8]) pts_container = [] for mn, mx in [[-1, 1], [-1, 1]]: pts_container.append(np.linspace(mn, mx, res)) grids_container = np.meshgrid(*pts_container) unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T unrolled_pts = torch.cat([unrolled_pts, param.double().repeat(unrolled_pts.shape[0]).reshape(-1, 2)], axis=1) #unrolled_pts.to(dtype=self.dtype) unrolled_pts = LabelTensor(unrolled_pts, ['x1', 'x2', 'mu1', 'mu2']) Z_pred = pinn.model(unrolled_pts.tensor) data = VTUHandler.read(fname_plus) print(data['points'][:, :2].shape) print(data['point_data']['f_16'].shape) print(grids_container[0].shape) print(grids_container[1].shape) Z_truth = griddata(data['points'][:, :2], data['point_data']['f_16'], (grids_container[0], grids_container[1])) err = np.abs(Z_truth + Z_pred.tensor.reshape(res, res).detach().numpy()) plt.subplot(1, 3, 1) plt.pcolor(-Z_pred.tensor.reshape(res, res).detach()) plt.colorbar() plt.subplot(1, 3, 2) plt.pcolor(Z_truth) plt.colorbar() plt.subplot(1, 3, 3) print('gggggg') plt.pcolor(err, vmin=0, vmax=0.001) plt.colorbar() plt.show() with open('parpoisson_plus_plot.txt', 'w') as f_: f_.write('x y truth pred e\n') for (x, y), tru, pre, e in zip(unrolled_pts[:, :2], Z_truth.reshape(-1, 1), -Z_pred.tensor.reshape(-1, 1), err.reshape(-1, 1)): f_.write('{} {} {} {} {}\n'.format(x.item(), y.item(), tru.item(), pre.item(), e.item()))