from mpmath import chebyt, chop, taylor from .problem import Problem import torch import torch.nn as nn import numpy as np from .cube import Cube from .deep_feed_forward import DeepFeedForward from pina.label_tensor import LabelTensor from pina.pinn import PINN torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732 class ParametricPINN(PINN): def __init__(self, problem, model, optimizer=torch.optim.Adam, lr=0.001, regularizer=0.00001, data_weight=1., dtype=torch.float64, device='cpu', lr_accelerate=None, error_norm='mse'): ''' :param Problem problem: the formualation of the problem. :param dict architecture: a dictionary containing the information to build the model. Valid options are: - inner_size [int] the number of neurons in the hidden layers; by default is 20. - n_layers [int] the number of hidden layers; by default is 4. - func [nn.Module or str] the activation function; passing a `str` is possible to chose adaptive function (between 'adapt_tanh'); by default is non-adaptive iperbolic tangent. :param float lr: the learning rate; default is 0.001 :param float regularizer: the coefficient for L2 regularizer term :param type dtype: the data type to use for the model. Valid option are `torch.float32` and `torch.float64` (`torch.float16` only on GPU); default is `torch.float64`. :param float lr_accelete: the coefficient that controls the learning rate increase, such that, for all the epoches in which the loss is decreasing, the learning_rate is update using $learning_rate = learning_rate * lr_accelerate$. When the loss stops to decrease, the learning rate is set to the initial value [TODO test parameters] ''' self.problem = problem # self._architecture = architecture if architecture else dict() # self._architecture['input_dimension'] = self.problem.domain_bound.shape[0] # self._architecture['output_dimension'] = len(self.problem.variables) # if hasattr(self.problem, 'params_domain'): # self._architecture['input_dimension'] += self.problem.params_domain.shape[0] self.accelerate = lr_accelerate self.error_norm = error_norm if device == 'cuda' and not torch.cuda.is_available(): raise RuntimeError self.device = torch.device(device) self.dtype = dtype self.history = [] self.model = model self.model.to(dtype=self.dtype, device=self.device) self.input_pts = {} self.truth_values = {} self.trained_epoch = 0 self.optimizer = optimizer( self.model.parameters(), lr=lr, weight_decay=regularizer) self.data_weight = data_weight @property def problem(self): return self._problem @problem.setter def problem(self, problem): if not isinstance(problem, Problem): raise TypeError self._problem = problem def get_data_residuals(self): data_residuals = [] for output in self.data_pts: data_values_pred = self.model(self.data_pts[output]) data_residuals.append(data_values_pred - self.data_values[output]) return torch.cat(data_residuals) def get_phys_residuals(self): """ """ residuals = [] for equation in self.problem.equation: residuals.append(equation(self.phys_pts, self.model(self.phys_pts))) return residuals def _compute_norm(self, vec): """ Compute the norm of the `vec` one-dimensional tensor based on the `self.error_norm` attribute. .. todo: complete :param vec torch.tensor: the tensor """ if isinstance(self.error_norm, int): return torch.sum(torch.abs(vec**self.error_norm))**(1./self.error_norm) elif self.error_norm == 'mse': return torch.mean(vec**2) elif self.error_norm == 'me': return torch.mean(torch.abs(vec)) else: raise RuntimeError def save_state(self, filename): checkpoint = { 'epoch': self.trained_epoch, 'model_state': self.model.state_dict(), 'optimizer_state' : self.optimizer.state_dict(), 'optimizer_class' : self.optimizer.__class__, } # TODO save also architecture param? #if isinstance(self.model, DeepFeedForward): # checkpoint['model_class'] = self.model.__class__ # checkpoint['model_structure'] = { # } torch.save(checkpoint, filename) def load_state(self, filename): checkpoint = torch.load(filename) self.model.load_state_dict(checkpoint['model_state']) self.optimizer = checkpoint['optimizer_class'](self.model.parameters()) self.optimizer.load_state_dict(checkpoint['optimizer_state']) self.trained_epoch = checkpoint['epoch'] return self def span_pts(self, n, mode='grid', locations='all'): ''' ''' if locations == 'all': locations = [condition for condition in self.problem.conditions] for location in locations: manifold, func = self.problem.conditions[location].values() if torch.is_tensor(manifold): pts = manifold else: pts = manifold.discretize(n, mode) pts = torch.from_numpy(pts) self.input_pts[location] = LabelTensor(pts, self.problem.input_variables) self.input_pts[location].tensor.to(dtype=self.dtype, device=self.device) self.input_pts[location].tensor.requires_grad_(True) self.input_pts[location].tensor.retain_grad() def train(self, stop=100, frequency_print=2, trial=None): epoch = 0 ## TODO for elliptic # parameters = torch.cat(torch.linspace( # self.problem.parameter_domain[0, 0], # self.problem.parameter_domain[0, 1], # 5) ## for param laplacian #parameters = torch.rand(50, 2)*2-1 parameters = torch.from_numpy(Cube([[-1, 1], [-1, 1]]).discretize(5, 'grid')) # alpha_p = torch.logspace(start=-2, end=0, steps=10) # mu_p = torch.linspace(0.5, 3, 5) # g1_, g2_ = torch.meshgrid(alpha_p, mu_p) # parameters = torch.cat([g2_.reshape(-1, 1), g1_.reshape(-1, 1)], axis=1) print(parameters) while True: losses = [] for condition_name in self.problem.conditions: pts = self.input_pts[condition_name] pts = torch.cat([ pts.tensor.repeat_interleave(parameters.shape[0], dim=0), torch.tile(parameters, (pts.tensor.shape[0], 1)) ], axis=1) pts = LabelTensor(pts, self.problem.input_variables + self.problem.parameters) predicted = self.model(pts.tensor) #predicted = self.model(pts) if isinstance(self.problem.conditions[condition_name]['func'], list): for func in self.problem.conditions[condition_name]['func']: residuals = func(pts, None, predicted) losses.append(self._compute_norm(residuals)) else: residuals = self.problem.conditions[condition_name]['func'](pts, None, predicted) losses.append(self._compute_norm(residuals)) self.optimizer.zero_grad() sum(losses).backward() self.optimizer.step() #for p in parameters: # pts = self.input_pts[condition_name] # #pts = torch.cat([pts.tensor, p.double().repeat(pts.tensor.shape[0]).reshape(-1, 2)], axis=1) # #pts = torch.cat([pts.tensor, p.double().repeat(pts.tensor.shape[0]).reshape(-1, 1)], axis=1) # #print(self.problem.input_variables) # # print(self.problem.parameters) # # print(pts.shape) # print(pts.tensor.repeat_interleave(parameters.shape[0])) # # print(pts) # # gg # a = torch.cat([ # pts.tensor.repeat_interleave(parameters.shape[0], dim=0), # torch.tile(parameters, (pts.tensor.shape[0], 1)) # ], axis=1) # for i in a: # print(i.detach()) # ttt # pts = LabelTensor(pts, self.problem.input_variables + self.problem.parameters) # ffff # print(pts.labels) # predicted = self.model(pts.tensor) # #predicted = self.model(pts) # if isinstance(self.problem.conditions[condition_name]['func'], list): # for func in self.problem.conditions[condition_name]['func']: # residuals = func(pts, LabelTensor(p.reshape(1, -1), ['mu', 'alpha']), predicted) # tmp_losses.append(self._compute_norm(residuals)) # else: # residuals = self.problem.conditions[condition_name]['func'](pts, p, predicted) # tmp_losses.append(self._compute_norm(residuals)) #losses.append(sum(tmp_losses)) self.trained_epoch += 1 #if epoch % 10 == 0: # self.history.append(losses) epoch += 1 if trial: import optuna rial.report(loss[0].item()+loss[1].item(), epoch) if trial.should_prune(): raise optuna.exceptions.TrialPruned() if isinstance(stop, int): if epoch == stop: break elif isinstance(stop, float): if loss[0].item() + loss[1].item() < stop: break if epoch % frequency_print == 0: print('[epoch {:05d}] {:.6e} '.format(self.trained_epoch, sum(losses).item()), end='') for loss in losses: print('{:.6e} '.format(loss), end='') print() return sum(losses).item() def error(self, dtype='l2', res=100): import numpy as np if hasattr(self.problem, 'truth_solution') and self.problem.truth_solution is not None: pts_container = [] for mn, mx in self.problem.domain_bound: pts_container.append(np.linspace(mn, mx, res)) grids_container = np.meshgrid(*pts_container) Z_true = self.problem.truth_solution(*grids_container) elif hasattr(self.problem, 'data_solution') and self.problem.data_solution is not None: grids_container = self.problem.data_solution['grid'] Z_true = self.problem.data_solution['grid_solution'] try: unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T.to(dtype=self.dtype, device=self.device) Z_pred = self.model(unrolled_pts) Z_pred = Z_pred.detach().numpy().reshape(grids_container[0].shape) if dtype == 'l2': return np.linalg.norm(Z_pred - Z_true)/np.linalg.norm(Z_true) else: # TODO H1 pass except: print("") print("Something went wrong...") print("Not able to compute the error. Please pass a data solution or a true solution") def plot(self, res, param, filename=None, variable=None): ''' ''' import matplotlib matplotlib.use('GTK3Agg') import matplotlib.pyplot as plt pts_container = [] for mn, mx in [[-1, 1], [-1, 1]]: pts_container.append(np.linspace(mn, mx, res)) grids_container = np.meshgrid(*pts_container) unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T unrolled_pts = torch.cat([unrolled_pts, param.double().repeat(unrolled_pts.shape[0]).reshape(-1, 2)], axis=1) unrolled_pts.to(dtype=self.dtype) unrolled_pts = LabelTensor(unrolled_pts, ['x1', 'x2', 'mu1', 'mu2']) Z_pred = self.model(unrolled_pts.tensor) n = Z_pred.tensor.shape[1] plt.figure(figsize=(6*n, 6)) for i, output in enumerate(Z_pred.tensor.T, start=1): output = output.detach().numpy().reshape(grids_container[0].shape) plt.subplot(1, n, i) plt.contourf(*grids_container, output) plt.colorbar() if filename is None: plt.show() else: plt.savefig(filename) def plot_params(self, res, param, filename=None, variable=None): ''' ''' import matplotlib matplotlib.use('GTK3Agg') import matplotlib.pyplot as plt if hasattr(self.problem, 'truth_solution') and self.problem.truth_solution is not None: n_plot = 2 elif hasattr(self.problem, 'data_solution') and self.problem.data_solution is not None: n_plot = 2 else: n_plot = 1 fig, axs = plt.subplots(nrows=1, ncols=n_plot, figsize=(n_plot*6,4)) if not isinstance(axs, np.ndarray): axs = [axs] if hasattr(self.problem, 'data_solution') and self.problem.data_solution is not None: grids_container = self.problem.data_solution['grid'] Z_true = self.problem.data_solution['grid_solution'] elif hasattr(self.problem, 'truth_solution') and self.problem.truth_solution is not None: pts_container = [] for mn, mx in self.problem.domain_bound: pts_container.append(np.linspace(mn, mx, res)) grids_container = np.meshgrid(*pts_container) Z_true = self.problem.truth_solution(*grids_container) pts_container = [] for mn, mx in self.problem.domain_bound: pts_container.append(np.linspace(mn, mx, res)) grids_container = np.meshgrid(*pts_container) unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T.to(dtype=self.type) #print(unrolled_pts) #print(param) param_unrolled_pts = torch.cat((unrolled_pts, param.repeat(unrolled_pts.shape[0], 1)), 1) if variable==None: variable = self.problem.variables[0] Z_pred = self.evaluate(param_unrolled_pts)[variable] variable = "Solution" else: Z_pred = self.evaluate(param_unrolled_pts)[variable] Z_pred= Z_pred.detach().numpy().reshape(grids_container[0].shape) set_pred = axs[0].contourf(*grids_container, Z_pred) axs[0].set_title('PINN [trained epoch = {}]'.format(self.trained_epoch) + " " + variable) #TODO add info about parameter in the title fig.colorbar(set_pred, ax=axs[0]) if n_plot == 2: set_true = axs[1].contourf(*grids_container, Z_true) axs[1].set_title('Truth solution') fig.colorbar(set_true, ax=axs[1]) if filename is None: plt.show() else: fig.savefig(filename + " " + variable) def plot_error(self, res, filename=None): import matplotlib matplotlib.use('GTK3Agg') import matplotlib.pyplot as plt fig, axs = plt.subplots(nrows=1, ncols=1, figsize=(6,4)) if not isinstance(axs, np.ndarray): axs = [axs] if hasattr(self.problem, 'data_solution') and self.problem.data_solution is not None: grids_container = self.problem.data_solution['grid'] Z_true = self.problem.data_solution['grid_solution'] elif hasattr(self.problem, 'truth_solution') and self.problem.truth_solution is not None: pts_container = [] for mn, mx in self.problem.domain_bound: pts_container.append(np.linspace(mn, mx, res)) grids_container = np.meshgrid(*pts_container) Z_true = self.problem.truth_solution(*grids_container) try: unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T.to(dtype=self.type) Z_pred = self.model(unrolled_pts) Z_pred = Z_pred.detach().numpy().reshape(grids_container[0].shape) set_pred = axs[0].contourf(*grids_container, abs(Z_pred - Z_true)) axs[0].set_title('PINN [trained epoch = {}]'.format(self.trained_epoch) + "Pointwise Error") fig.colorbar(set_pred, ax=axs[0]) if filename is None: plt.show() else: fig.savefig(filename) except: print("") print("Something went wrong...") print("Not able to plot the error. Please pass a data solution or a true solution") ''' print(self.pred_loss.item(),loss.item(), self.old_loss.item()) if self.accelerate is not None: if self.pred_loss > loss and loss >= self.old_loss: self.current_lr = self.original_lr #print('restart') elif (loss-self.pred_loss).item() < 0.1: self.current_lr += .5*self.current_lr #print('powa') else: self.current_lr -= .5*self.current_lr #print(self.current_lr) #self.current_lr = min(loss.item()*3, 0.02) for g in self.optimizer.param_groups: g['lr'] = self.current_lr '''