import numpy as np import torch from pina.segment import Segment from pina.cube import Cube from pina.problem2d import Problem2D from pina.problem import Problem class Poisson2DProblem(Problem2D): def __init__(self): def laplace_equation(input_, output_): grad_u = self.grad(output_['u'], input_) gradgrad_u_x = self.grad(grad_u['x'], input_) gradgrad_u_y = self.grad(grad_u['y'], input_) #force_term = (torch.sin(input_['x']*torch.pi) # * torch.sin(input_['y']*torch.pi)) force_term = -2*(input_['y']*(1-input_['y']) + input_['x']*(1-input_['x'])) return gradgrad_u_x['x'] + gradgrad_u_y['y'] - force_term def nil_dirichlet(input_, output_): value = 0.0 return output_['u'] - value self.conditions = { 'gamma1': {'location': Segment((0, 0), (1, 0)), 'func': nil_dirichlet}, 'gamma2': {'location': Segment((1, 0), (1, 1)), 'func': nil_dirichlet}, 'gamma3': {'location': Segment((1, 1), (0, 1)), 'func': nil_dirichlet}, 'gamma4': {'location': Segment((0, 1), (0, 0)), 'func': nil_dirichlet}, 'D': {'location': Cube([[0, 1], [0, 1]]), 'func': laplace_equation} } def poisson_sol(x, y): return x*(1-x)*y*(1-y) self.input_variables = ['x', 'y'] self.output_variables = ['u'] self.truth_solution = poisson_sol self.spatial_domain = Cube([[0, 1], [0, 1]]) #self.check() # Check the problem is correctly set