import torch import pytest from pina.data.dataset import PinaDatasetFactory, PinaGraphDataset from pina.graph import KNNGraph from torch_geometric.data import Data x = torch.rand((100, 20, 10)) pos = torch.rand((100, 20, 2)) input_ = KNNGraph(x=x, pos=pos, k=3, build_edge_attr=True) output_ = torch.rand((100, 20, 10)) x_2 = torch.rand((50, 20, 10)) pos_2 = torch.rand((50, 20, 2)) input_2_ = KNNGraph(x=x_2, pos=pos_2, k=3, build_edge_attr=True) output_2_ = torch.rand((50, 20, 10)) # Problem with a single condition conditions_dict_single = { 'data': { 'input_points': input_.data, 'output_points': output_, } } max_conditions_lengths_single = { 'data': 100 } # Problem with multiple conditions conditions_dict_single_multi = { 'data_1': { 'input_points': input_.data, 'output_points': output_, }, 'data_2': { 'input_points': input_2_.data, 'output_points': output_2_, } } max_conditions_lengths_multi = { 'data_1': 100, 'data_2': 50 } @pytest.mark.parametrize( "conditions_dict, max_conditions_lengths", [ (conditions_dict_single, max_conditions_lengths_single), (conditions_dict_single_multi, max_conditions_lengths_multi) ] ) def test_constructor(conditions_dict, max_conditions_lengths): dataset = PinaDatasetFactory(conditions_dict, max_conditions_lengths=max_conditions_lengths, automatic_batching=True) assert isinstance(dataset, PinaGraphDataset) assert len(dataset) == 100 @pytest.mark.parametrize( "conditions_dict, max_conditions_lengths", [ (conditions_dict_single, max_conditions_lengths_single), (conditions_dict_single_multi, max_conditions_lengths_multi) ] ) def test_getitem(conditions_dict, max_conditions_lengths): dataset = PinaDatasetFactory(conditions_dict, max_conditions_lengths=max_conditions_lengths, automatic_batching=True) data = dataset[50] assert isinstance(data, dict) assert all([isinstance(d['input_points'], Data) for d in data.values()]) assert all([isinstance(d['output_points'], torch.Tensor) for d in data.values()]) assert all([d['input_points'].x.shape == torch.Size((20, 10)) for d in data.values()]) assert all([d['output_points'].shape == torch.Size((20, 10)) for d in data.values()]) assert all([d['input_points'].edge_index.shape == torch.Size((2, 60)) for d in data.values()]) assert all([d['input_points'].edge_attr.shape[0] == 60 for d in data.values()]) data = dataset.fetch_from_idx_list([i for i in range(20)]) assert isinstance(data, dict) assert all([isinstance(d['input_points'], Data) for d in data.values()]) assert all([isinstance(d['output_points'], torch.Tensor) for d in data.values()]) assert all([d['input_points'].x.shape == torch.Size((400, 10)) for d in data.values()]) assert all([d['output_points'].shape == torch.Size((400, 10)) for d in data.values()]) assert all([d['input_points'].edge_index.shape == torch.Size((2, 1200)) for d in data.values()]) assert all([d['input_points'].edge_attr.shape[0] == 1200 for d in data.values()])