* Refactoring solvers * Simplify logic compile * Improve and update doc * Create SupervisedSolverInterface * Specialize SupervisedSolver and ReducedOrderModelSolver * Create EnsembleSolverInterface + EnsembleSupervisedSolver * Create tests ensemble solvers * formatter * codacy * fix issues + speedup test
363 lines
12 KiB
Python
363 lines
12 KiB
Python
"""Module for the GAROM solver."""
|
|
|
|
import torch
|
|
from torch.nn.modules.loss import _Loss
|
|
from .solver import MultiSolverInterface
|
|
from ..condition import InputTargetCondition
|
|
from ..utils import check_consistency
|
|
from ..loss import LossInterface, PowerLoss
|
|
|
|
|
|
class GAROM(MultiSolverInterface):
|
|
"""
|
|
GAROM solver class. This class implements Generative Adversarial Reduced
|
|
Order Model solver, using user specified ``models`` to solve a specific
|
|
order reduction ``problem``.
|
|
|
|
.. seealso::
|
|
|
|
**Original reference**: Coscia, D., Demo, N., & Rozza, G. (2023).
|
|
*Generative Adversarial Reduced Order Modelling*.
|
|
DOI: `arXiv preprint arXiv:2305.15881.
|
|
<https://doi.org/10.48550/arXiv.2305.15881>`_.
|
|
"""
|
|
|
|
accepted_conditions_types = InputTargetCondition
|
|
|
|
def __init__(
|
|
self,
|
|
problem,
|
|
generator,
|
|
discriminator,
|
|
loss=None,
|
|
optimizer_generator=None,
|
|
optimizer_discriminator=None,
|
|
scheduler_generator=None,
|
|
scheduler_discriminator=None,
|
|
gamma=0.3,
|
|
lambda_k=0.001,
|
|
regularizer=False,
|
|
):
|
|
"""
|
|
Initialization of the :class:`GAROM` class.
|
|
|
|
:param AbstractProblem problem: The formulation of the problem.
|
|
:param torch.nn.Module generator: The generator model.
|
|
:param torch.nn.Module discriminator: The discriminator model.
|
|
:param torch.nn.Module loss: The loss function to be minimized.
|
|
If ``None``, :class:`~pina.loss.power_loss.PowerLoss` with ``p=1``
|
|
is used. Default is ``None``.
|
|
:param Optimizer optimizer_generator: The optimizer for the generator.
|
|
If ``None``, the :class:`torch.optim.Adam` optimizer is used.
|
|
Default is ``None``.
|
|
:param Optimizer optimizer_discriminator: The optimizer for the
|
|
discriminator. If ``None``, the :class:`torch.optim.Adam`
|
|
optimizer is used. Default is ``None``.
|
|
:param Scheduler scheduler_generator: The learning rate scheduler for
|
|
the generator.
|
|
If ``None``, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
|
scheduler is used. Default is ``None``.
|
|
:param Scheduler scheduler_discriminator: The learning rate scheduler
|
|
for the discriminator.
|
|
If ``None``, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
|
scheduler is used. Default is ``None``.
|
|
:param float gamma: Ratio of expected loss for generator and
|
|
discriminator. Default is ``0.3``.
|
|
:param float lambda_k: Learning rate for control theory optimization.
|
|
Default is ``0.001``.
|
|
:param bool regularizer: If ``True``, uses a regularization term in the
|
|
GAROM loss. Default is ``False``.
|
|
"""
|
|
|
|
# set loss
|
|
if loss is None:
|
|
loss = PowerLoss(p=1)
|
|
|
|
super().__init__(
|
|
models=[generator, discriminator],
|
|
problem=problem,
|
|
optimizers=[optimizer_generator, optimizer_discriminator],
|
|
schedulers=[
|
|
scheduler_generator,
|
|
scheduler_discriminator,
|
|
],
|
|
use_lt=False,
|
|
)
|
|
|
|
# check consistency
|
|
check_consistency(
|
|
loss, (LossInterface, _Loss, torch.nn.Module), subclass=False
|
|
)
|
|
self._loss_fn = loss
|
|
|
|
# set automatic optimization for GANs
|
|
self.automatic_optimization = False
|
|
|
|
# check consistency
|
|
check_consistency(gamma, float)
|
|
check_consistency(lambda_k, float)
|
|
check_consistency(regularizer, bool)
|
|
|
|
# began hyperparameters
|
|
self.k = 0
|
|
self.gamma = gamma
|
|
self.lambda_k = lambda_k
|
|
self.regularizer = float(regularizer)
|
|
|
|
def forward(self, x, mc_steps=20, variance=False):
|
|
"""
|
|
Forward pass implementation.
|
|
|
|
:param torch.Tensor x: The input tensor.
|
|
:param int mc_steps: Number of Montecarlo samples to approximate the
|
|
expected value. Default is ``20``.
|
|
:param bool variance: If ``True``, the method returns also the variance
|
|
of the solution. Default is ``False``.
|
|
:return: The expected value of the generator distribution. If
|
|
``variance=True``, the method returns also the variance.
|
|
:rtype: torch.Tensor | tuple[torch.Tensor, torch.Tensor]
|
|
"""
|
|
|
|
# sampling
|
|
field_sample = [self.sample(x) for _ in range(mc_steps)]
|
|
field_sample = torch.stack(field_sample)
|
|
|
|
# extract mean
|
|
mean = field_sample.mean(dim=0)
|
|
|
|
if variance:
|
|
var = field_sample.var(dim=0)
|
|
return mean, var
|
|
|
|
return mean
|
|
|
|
def sample(self, x):
|
|
"""
|
|
Sample from the generator distribution.
|
|
|
|
:param torch.Tensor x: The input tensor.
|
|
:return: The generated sample.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
# sampling
|
|
return self.generator(x)
|
|
|
|
def _train_generator(self, parameters, snapshots):
|
|
"""
|
|
Train the generator model.
|
|
|
|
:param torch.Tensor parameters: The input tensor.
|
|
:param torch.Tensor snapshots: The target tensor.
|
|
:return: The residual loss and the generator loss.
|
|
:rtype: tuple[torch.Tensor, torch.Tensor]
|
|
"""
|
|
self.optimizer_generator.instance.zero_grad()
|
|
|
|
# Generate a batch of images
|
|
generated_snapshots = self.sample(parameters)
|
|
|
|
# generator loss
|
|
r_loss = self._loss_fn(snapshots, generated_snapshots)
|
|
d_fake = self.discriminator([generated_snapshots, parameters])
|
|
g_loss = (
|
|
self._loss_fn(d_fake, generated_snapshots)
|
|
+ self.regularizer * r_loss
|
|
)
|
|
|
|
# backward step
|
|
g_loss.backward()
|
|
self.optimizer_generator.instance.step()
|
|
self.scheduler_generator.instance.step()
|
|
|
|
return r_loss, g_loss
|
|
|
|
def _train_discriminator(self, parameters, snapshots):
|
|
"""
|
|
Train the discriminator model.
|
|
|
|
:param torch.Tensor parameters: The input tensor.
|
|
:param torch.Tensor snapshots: The target tensor.
|
|
:return: The residual loss and the generator loss.
|
|
:rtype: tuple[torch.Tensor, torch.Tensor]
|
|
"""
|
|
self.optimizer_discriminator.instance.zero_grad()
|
|
|
|
# Generate a batch of images
|
|
generated_snapshots = self.sample(parameters)
|
|
|
|
# Discriminator pass
|
|
d_real = self.discriminator([snapshots, parameters])
|
|
d_fake = self.discriminator([generated_snapshots, parameters])
|
|
|
|
# evaluate loss
|
|
d_loss_real = self._loss_fn(d_real, snapshots)
|
|
d_loss_fake = self._loss_fn(d_fake, generated_snapshots.detach())
|
|
d_loss = d_loss_real - self.k * d_loss_fake
|
|
|
|
# backward step
|
|
d_loss.backward()
|
|
self.optimizer_discriminator.instance.step()
|
|
self.scheduler_discriminator.instance.step()
|
|
|
|
return d_loss_real, d_loss_fake, d_loss
|
|
|
|
def _update_weights(self, d_loss_real, d_loss_fake):
|
|
"""
|
|
Update the weights of the generator and discriminator models.
|
|
|
|
:param torch.Tensor d_loss_real: The discriminator loss computed on
|
|
dataset samples.
|
|
:param torch.Tensor d_loss_fake: The discriminator loss computed on
|
|
generated samples.
|
|
:return: The difference between the loss computed on the dataset samples
|
|
and the loss computed on the generated samples.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
|
|
diff = torch.mean(self.gamma * d_loss_real - d_loss_fake)
|
|
|
|
# Update weight term for fake samples
|
|
self.k += self.lambda_k * diff.item()
|
|
self.k = min(max(self.k, 0), 1) # Constraint to interval [0, 1]
|
|
return diff
|
|
|
|
def optimization_cycle(self, batch):
|
|
"""
|
|
The optimization cycle for the GAROM solver.
|
|
|
|
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
|
tuple containing a condition name and a dictionary of points.
|
|
:return: The losses computed for all conditions in the batch, casted
|
|
to a subclass of :class:`torch.Tensor`. It should return a dict
|
|
containing the condition name and the associated scalar loss.
|
|
:rtype: dict
|
|
"""
|
|
condition_loss = {}
|
|
for condition_name, points in batch:
|
|
parameters, snapshots = (
|
|
points["input"],
|
|
points["target"],
|
|
)
|
|
d_loss_real, d_loss_fake, d_loss = self._train_discriminator(
|
|
parameters, snapshots
|
|
)
|
|
r_loss, g_loss = self._train_generator(parameters, snapshots)
|
|
diff = self._update_weights(d_loss_real, d_loss_fake)
|
|
condition_loss[condition_name] = r_loss
|
|
|
|
# some extra logging
|
|
self.store_log("d_loss", float(d_loss), self.get_batch_size(batch))
|
|
self.store_log("g_loss", float(g_loss), self.get_batch_size(batch))
|
|
self.store_log(
|
|
"stability_metric",
|
|
float(d_loss_real + torch.abs(diff)),
|
|
self.get_batch_size(batch),
|
|
)
|
|
return condition_loss
|
|
|
|
def validation_step(self, batch):
|
|
"""
|
|
The validation step for the PINN solver.
|
|
|
|
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
|
tuple containing a condition name and a dictionary of points.
|
|
:return: The loss of the validation step.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
condition_loss = {}
|
|
for condition_name, points in batch:
|
|
parameters, snapshots = (
|
|
points["input"],
|
|
points["target"],
|
|
)
|
|
snapshots_gen = self.generator(parameters)
|
|
condition_loss[condition_name] = self._loss_fn(
|
|
snapshots, snapshots_gen
|
|
)
|
|
loss = self.weighting.aggregate(condition_loss)
|
|
self.store_log("val_loss", loss, self.get_batch_size(batch))
|
|
return loss
|
|
|
|
def test_step(self, batch):
|
|
"""
|
|
The test step for the PINN solver.
|
|
|
|
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
|
tuple containing a condition name and a dictionary of points.
|
|
:return: The loss of the test step.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
condition_loss = {}
|
|
for condition_name, points in batch:
|
|
parameters, snapshots = (
|
|
points["input"],
|
|
points["target"],
|
|
)
|
|
snapshots_gen = self.generator(parameters)
|
|
condition_loss[condition_name] = self._loss_fn(
|
|
snapshots, snapshots_gen
|
|
)
|
|
loss = self.weighting.aggregate(condition_loss)
|
|
self.store_log("test_loss", loss, self.get_batch_size(batch))
|
|
return loss
|
|
|
|
@property
|
|
def generator(self):
|
|
"""
|
|
The generator model.
|
|
|
|
:return: The generator model.
|
|
:rtype: torch.nn.Module
|
|
"""
|
|
return self.models[0]
|
|
|
|
@property
|
|
def discriminator(self):
|
|
"""
|
|
The discriminator model.
|
|
|
|
:return: The discriminator model.
|
|
:rtype: torch.nn.Module
|
|
"""
|
|
return self.models[1]
|
|
|
|
@property
|
|
def optimizer_generator(self):
|
|
"""
|
|
The optimizer for the generator.
|
|
|
|
:return: The optimizer for the generator.
|
|
:rtype: Optimizer
|
|
"""
|
|
return self.optimizers[0]
|
|
|
|
@property
|
|
def optimizer_discriminator(self):
|
|
"""
|
|
The optimizer for the discriminator.
|
|
|
|
:return: The optimizer for the discriminator.
|
|
:rtype: Optimizer
|
|
"""
|
|
return self.optimizers[1]
|
|
|
|
@property
|
|
def scheduler_generator(self):
|
|
"""
|
|
The scheduler for the generator.
|
|
|
|
:return: The scheduler for the generator.
|
|
:rtype: Scheduler
|
|
"""
|
|
return self.schedulers[0]
|
|
|
|
@property
|
|
def scheduler_discriminator(self):
|
|
"""
|
|
The scheduler for the discriminator.
|
|
|
|
:return: The scheduler for the discriminator.
|
|
:rtype: Scheduler
|
|
"""
|
|
return self.schedulers[1]
|