* Refactoring solvers * Simplify logic compile * Improve and update doc * Create SupervisedSolverInterface * Specialize SupervisedSolver and ReducedOrderModelSolver * Create EnsembleSolverInterface + EnsembleSupervisedSolver * Create tests ensemble solvers * formatter * codacy * fix issues + speedup test
134 lines
4.8 KiB
Python
134 lines
4.8 KiB
Python
"""Module for the Physics-Informed Neural Network solver."""
|
|
|
|
import torch
|
|
|
|
from .pinn_interface import PINNInterface
|
|
from ..solver import SingleSolverInterface
|
|
from ...problem import InverseProblem
|
|
|
|
|
|
class PINN(PINNInterface, SingleSolverInterface):
|
|
r"""
|
|
Physics-Informed Neural Network (PINN) solver class.
|
|
This class implements Physics-Informed Neural Network solver, using a user
|
|
specified ``model`` to solve a specific ``problem``.
|
|
It can be used to solve both forward and inverse problems.
|
|
|
|
The Physics Informed Neural Network solver aims to find the solution
|
|
:math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential problem:
|
|
|
|
.. math::
|
|
|
|
\begin{cases}
|
|
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
|
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
|
\mathbf{x}\in\partial\Omega
|
|
\end{cases}
|
|
|
|
minimizing the loss function:
|
|
|
|
.. math::
|
|
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
|
|
\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
|
|
\frac{1}{N}\sum_{i=1}^N
|
|
\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i)),
|
|
|
|
where :math:`\mathcal{L}` is a specific loss function, typically the MSE:
|
|
|
|
.. math::
|
|
\mathcal{L}(v) = \| v \|^2_2.
|
|
|
|
.. seealso::
|
|
|
|
**Original reference**: Karniadakis, G. E., Kevrekidis, I. G., Lu, L.,
|
|
Perdikaris, P., Wang, S., & Yang, L. (2021).
|
|
*Physics-informed machine learning.*
|
|
Nature Reviews Physics, 3, 422-440.
|
|
DOI: `10.1038 <https://doi.org/10.1038/s42254-021-00314-5>`_.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
problem,
|
|
model,
|
|
optimizer=None,
|
|
scheduler=None,
|
|
weighting=None,
|
|
loss=None,
|
|
):
|
|
"""
|
|
Initialization of the :class:`PINN` class.
|
|
|
|
:param AbstractProblem problem: The problem to be solved.
|
|
:param torch.nn.Module model: The neural network model to be used.
|
|
:param Optimizer optimizer: The optimizer to be used.
|
|
If ``None``, the :class:`torch.optim.Adam` optimizer is used.
|
|
Default is ``None``.
|
|
:param Scheduler scheduler: Learning rate scheduler.
|
|
If ``None``, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
|
scheduler is used. Default is ``None``.
|
|
:param WeightingInterface weighting: The weighting schema to be used.
|
|
If ``None``, no weighting schema is used. Default is ``None``.
|
|
:param torch.nn.Module loss: The loss function to be minimized.
|
|
If ``None``, the :class:`torch.nn.MSELoss` loss is used.
|
|
Default is `None`.
|
|
"""
|
|
super().__init__(
|
|
model=model,
|
|
problem=problem,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
weighting=weighting,
|
|
loss=loss,
|
|
)
|
|
|
|
def loss_data(self, input, target):
|
|
"""
|
|
Compute the data loss for the PINN solver by evaluating the loss
|
|
between the network's output and the true solution. This method should
|
|
not be overridden, if not intentionally.
|
|
|
|
:param input: The input to the neural network.
|
|
:type input: LabelTensor
|
|
:param target: The target to compare with the network's output.
|
|
:type target: LabelTensor
|
|
:return: The supervised loss, averaged over the number of observations.
|
|
:rtype: LabelTensor
|
|
"""
|
|
return self._loss_fn(self.forward(input), target)
|
|
|
|
def loss_phys(self, samples, equation):
|
|
"""
|
|
Computes the physics loss for the physics-informed solver based on the
|
|
provided samples and equation.
|
|
|
|
:param LabelTensor samples: The samples to evaluate the physics loss.
|
|
:param EquationInterface equation: The governing equation.
|
|
:return: The computed physics loss.
|
|
:rtype: LabelTensor
|
|
"""
|
|
residuals = self.compute_residual(samples, equation)
|
|
return self._loss_fn(residuals, torch.zeros_like(residuals))
|
|
|
|
def configure_optimizers(self):
|
|
"""
|
|
Optimizer configuration for the PINN solver.
|
|
|
|
:return: The optimizers and the schedulers
|
|
:rtype: tuple[list[Optimizer], list[Scheduler]]
|
|
"""
|
|
# If the problem is an InverseProblem, add the unknown parameters
|
|
# to the parameters to be optimized.
|
|
self.optimizer.hook(self.model.parameters())
|
|
if isinstance(self.problem, InverseProblem):
|
|
self.optimizer.instance.add_param_group(
|
|
{
|
|
"params": [
|
|
self._params[var]
|
|
for var in self.problem.unknown_variables
|
|
]
|
|
}
|
|
)
|
|
self.scheduler.hook(self.optimizer)
|
|
return ([self.optimizer.instance], [self.scheduler.instance])
|