Files
PINA/docs/source/tutorials/tutorial4/tutorial.html
2025-04-17 10:48:32 +02:00

9059 lines
1.0 MiB
Raw Permalink Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<!DOCTYPE html>
<html lang="en">
<head><meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1.0" name="viewport"/>
<title>tutorial</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script>
(function() {
function addWidgetsRenderer() {
var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]');
var scriptElement = document.createElement('script');
var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js';
var widgetState;
// Fallback for older version:
try {
widgetState = mimeElement && JSON.parse(mimeElement.innerHTML);
if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) {
var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js';
}
} catch(e) {}
scriptElement.src = widgetRendererSrc;
document.body.appendChild(scriptElement);
}
document.addEventListener('DOMContentLoaded', addWidgetsRenderer);
}());
</script>
<style type="text/css">
pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: var(--jp-cell-editor-active-background) }
.highlight { background: var(--jp-cell-editor-background); color: var(--jp-mirror-editor-variable-color) }
.highlight .c { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment */
.highlight .err { color: var(--jp-mirror-editor-error-color) } /* Error */
.highlight .k { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword */
.highlight .o { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator */
.highlight .p { color: var(--jp-mirror-editor-punctuation-color) } /* Punctuation */
.highlight .ch { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Multiline */
.highlight .cp { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Preproc */
.highlight .cpf { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Single */
.highlight .cs { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Special */
.highlight .kc { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Pseudo */
.highlight .kr { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Type */
.highlight .m { color: var(--jp-mirror-editor-number-color) } /* Literal.Number */
.highlight .s { color: var(--jp-mirror-editor-string-color) } /* Literal.String */
.highlight .ow { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator.Word */
.highlight .pm { color: var(--jp-mirror-editor-punctuation-color) } /* Punctuation.Marker */
.highlight .w { color: var(--jp-mirror-editor-variable-color) } /* Text.Whitespace */
.highlight .mb { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Bin */
.highlight .mf { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Float */
.highlight .mh { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Hex */
.highlight .mi { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer */
.highlight .mo { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Oct */
.highlight .sa { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Affix */
.highlight .sb { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Backtick */
.highlight .sc { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Char */
.highlight .dl { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Delimiter */
.highlight .sd { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Doc */
.highlight .s2 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Double */
.highlight .se { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Escape */
.highlight .sh { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Heredoc */
.highlight .si { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Interpol */
.highlight .sx { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Other */
.highlight .sr { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Regex */
.highlight .s1 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Single */
.highlight .ss { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Symbol */
.highlight .il { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer.Long */
</style>
<style type="text/css">
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*
* Mozilla scrollbar styling
*/
/* use standard opaque scrollbars for most nodes */
[data-jp-theme-scrollbars='true'] {
scrollbar-color: rgb(var(--jp-scrollbar-thumb-color))
var(--jp-scrollbar-background-color);
}
/* for code nodes, use a transparent style of scrollbar. These selectors
* will match lower in the tree, and so will override the above */
[data-jp-theme-scrollbars='true'] .CodeMirror-hscrollbar,
[data-jp-theme-scrollbars='true'] .CodeMirror-vscrollbar {
scrollbar-color: rgba(var(--jp-scrollbar-thumb-color), 0.5) transparent;
}
/* tiny scrollbar */
.jp-scrollbar-tiny {
scrollbar-color: rgba(var(--jp-scrollbar-thumb-color), 0.5) transparent;
scrollbar-width: thin;
}
/* tiny scrollbar */
.jp-scrollbar-tiny::-webkit-scrollbar,
.jp-scrollbar-tiny::-webkit-scrollbar-corner {
background-color: transparent;
height: 4px;
width: 4px;
}
.jp-scrollbar-tiny::-webkit-scrollbar-thumb {
background: rgba(var(--jp-scrollbar-thumb-color), 0.5);
}
.jp-scrollbar-tiny::-webkit-scrollbar-track:horizontal {
border-left: 0 solid transparent;
border-right: 0 solid transparent;
}
.jp-scrollbar-tiny::-webkit-scrollbar-track:vertical {
border-top: 0 solid transparent;
border-bottom: 0 solid transparent;
}
/*
* Lumino
*/
.lm-ScrollBar[data-orientation='horizontal'] {
min-height: 16px;
max-height: 16px;
min-width: 45px;
border-top: 1px solid #a0a0a0;
}
.lm-ScrollBar[data-orientation='vertical'] {
min-width: 16px;
max-width: 16px;
min-height: 45px;
border-left: 1px solid #a0a0a0;
}
.lm-ScrollBar-button {
background-color: #f0f0f0;
background-position: center center;
min-height: 15px;
max-height: 15px;
min-width: 15px;
max-width: 15px;
}
.lm-ScrollBar-button:hover {
background-color: #dadada;
}
.lm-ScrollBar-button.lm-mod-active {
background-color: #cdcdcd;
}
.lm-ScrollBar-track {
background: #f0f0f0;
}
.lm-ScrollBar-thumb {
background: #cdcdcd;
}
.lm-ScrollBar-thumb:hover {
background: #bababa;
}
.lm-ScrollBar-thumb.lm-mod-active {
background: #a0a0a0;
}
.lm-ScrollBar[data-orientation='horizontal'] .lm-ScrollBar-thumb {
height: 100%;
min-width: 15px;
border-left: 1px solid #a0a0a0;
border-right: 1px solid #a0a0a0;
}
.lm-ScrollBar[data-orientation='vertical'] .lm-ScrollBar-thumb {
width: 100%;
min-height: 15px;
border-top: 1px solid #a0a0a0;
border-bottom: 1px solid #a0a0a0;
}
.lm-ScrollBar[data-orientation='horizontal']
.lm-ScrollBar-button[data-action='decrement'] {
background-image: var(--jp-icon-caret-left);
background-size: 17px;
}
.lm-ScrollBar[data-orientation='horizontal']
.lm-ScrollBar-button[data-action='increment'] {
background-image: var(--jp-icon-caret-right);
background-size: 17px;
}
.lm-ScrollBar[data-orientation='vertical']
.lm-ScrollBar-button[data-action='decrement'] {
background-image: var(--jp-icon-caret-up);
background-size: 17px;
}
.lm-ScrollBar[data-orientation='vertical']
.lm-ScrollBar-button[data-action='increment'] {
background-image: var(--jp-icon-caret-down);
background-size: 17px;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
.lm-Widget {
box-sizing: border-box;
position: relative;
overflow: hidden;
}
.lm-Widget.lm-mod-hidden {
display: none !important;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
.lm-AccordionPanel[data-orientation='horizontal'] > .lm-AccordionPanel-title {
/* Title is rotated for horizontal accordion panel using CSS */
display: block;
transform-origin: top left;
transform: rotate(-90deg) translate(-100%);
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
.lm-CommandPalette {
display: flex;
flex-direction: column;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.lm-CommandPalette-search {
flex: 0 0 auto;
}
.lm-CommandPalette-content {
flex: 1 1 auto;
margin: 0;
padding: 0;
min-height: 0;
overflow: auto;
list-style-type: none;
}
.lm-CommandPalette-header {
overflow: hidden;
white-space: nowrap;
text-overflow: ellipsis;
}
.lm-CommandPalette-item {
display: flex;
flex-direction: row;
}
.lm-CommandPalette-itemIcon {
flex: 0 0 auto;
}
.lm-CommandPalette-itemContent {
flex: 1 1 auto;
overflow: hidden;
}
.lm-CommandPalette-itemShortcut {
flex: 0 0 auto;
}
.lm-CommandPalette-itemLabel {
overflow: hidden;
white-space: nowrap;
text-overflow: ellipsis;
}
.lm-close-icon {
border: 1px solid transparent;
background-color: transparent;
position: absolute;
z-index: 1;
right: 3%;
top: 0;
bottom: 0;
margin: auto;
padding: 7px 0;
display: none;
vertical-align: middle;
outline: 0;
cursor: pointer;
}
.lm-close-icon:after {
content: 'X';
display: block;
width: 15px;
height: 15px;
text-align: center;
color: #000;
font-weight: normal;
font-size: 12px;
cursor: pointer;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
.lm-DockPanel {
z-index: 0;
}
.lm-DockPanel-widget {
z-index: 0;
}
.lm-DockPanel-tabBar {
z-index: 1;
}
.lm-DockPanel-handle {
z-index: 2;
}
.lm-DockPanel-handle.lm-mod-hidden {
display: none !important;
}
.lm-DockPanel-handle:after {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
content: '';
}
.lm-DockPanel-handle[data-orientation='horizontal'] {
cursor: ew-resize;
}
.lm-DockPanel-handle[data-orientation='vertical'] {
cursor: ns-resize;
}
.lm-DockPanel-handle[data-orientation='horizontal']:after {
left: 50%;
min-width: 8px;
transform: translateX(-50%);
}
.lm-DockPanel-handle[data-orientation='vertical']:after {
top: 50%;
min-height: 8px;
transform: translateY(-50%);
}
.lm-DockPanel-overlay {
z-index: 3;
box-sizing: border-box;
pointer-events: none;
}
.lm-DockPanel-overlay.lm-mod-hidden {
display: none !important;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
.lm-Menu {
z-index: 10000;
position: absolute;
white-space: nowrap;
overflow-x: hidden;
overflow-y: auto;
outline: none;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.lm-Menu-content {
margin: 0;
padding: 0;
display: table;
list-style-type: none;
}
.lm-Menu-item {
display: table-row;
}
.lm-Menu-item.lm-mod-hidden,
.lm-Menu-item.lm-mod-collapsed {
display: none !important;
}
.lm-Menu-itemIcon,
.lm-Menu-itemSubmenuIcon {
display: table-cell;
text-align: center;
}
.lm-Menu-itemLabel {
display: table-cell;
text-align: left;
}
.lm-Menu-itemShortcut {
display: table-cell;
text-align: right;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
.lm-MenuBar {
outline: none;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.lm-MenuBar-content {
margin: 0;
padding: 0;
display: flex;
flex-direction: row;
list-style-type: none;
}
.lm-MenuBar-item {
box-sizing: border-box;
}
.lm-MenuBar-itemIcon,
.lm-MenuBar-itemLabel {
display: inline-block;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
.lm-ScrollBar {
display: flex;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.lm-ScrollBar[data-orientation='horizontal'] {
flex-direction: row;
}
.lm-ScrollBar[data-orientation='vertical'] {
flex-direction: column;
}
.lm-ScrollBar-button {
box-sizing: border-box;
flex: 0 0 auto;
}
.lm-ScrollBar-track {
box-sizing: border-box;
position: relative;
overflow: hidden;
flex: 1 1 auto;
}
.lm-ScrollBar-thumb {
box-sizing: border-box;
position: absolute;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
.lm-SplitPanel-child {
z-index: 0;
}
.lm-SplitPanel-handle {
z-index: 1;
}
.lm-SplitPanel-handle.lm-mod-hidden {
display: none !important;
}
.lm-SplitPanel-handle:after {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
content: '';
}
.lm-SplitPanel[data-orientation='horizontal'] > .lm-SplitPanel-handle {
cursor: ew-resize;
}
.lm-SplitPanel[data-orientation='vertical'] > .lm-SplitPanel-handle {
cursor: ns-resize;
}
.lm-SplitPanel[data-orientation='horizontal'] > .lm-SplitPanel-handle:after {
left: 50%;
min-width: 8px;
transform: translateX(-50%);
}
.lm-SplitPanel[data-orientation='vertical'] > .lm-SplitPanel-handle:after {
top: 50%;
min-height: 8px;
transform: translateY(-50%);
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
.lm-TabBar {
display: flex;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.lm-TabBar[data-orientation='horizontal'] {
flex-direction: row;
align-items: flex-end;
}
.lm-TabBar[data-orientation='vertical'] {
flex-direction: column;
align-items: flex-end;
}
.lm-TabBar-content {
margin: 0;
padding: 0;
display: flex;
flex: 1 1 auto;
list-style-type: none;
}
.lm-TabBar[data-orientation='horizontal'] > .lm-TabBar-content {
flex-direction: row;
}
.lm-TabBar[data-orientation='vertical'] > .lm-TabBar-content {
flex-direction: column;
}
.lm-TabBar-tab {
display: flex;
flex-direction: row;
box-sizing: border-box;
overflow: hidden;
touch-action: none; /* Disable native Drag/Drop */
}
.lm-TabBar-tabIcon,
.lm-TabBar-tabCloseIcon {
flex: 0 0 auto;
}
.lm-TabBar-tabLabel {
flex: 1 1 auto;
overflow: hidden;
white-space: nowrap;
}
.lm-TabBar-tabInput {
user-select: all;
width: 100%;
box-sizing: border-box;
}
.lm-TabBar-tab.lm-mod-hidden {
display: none !important;
}
.lm-TabBar-addButton.lm-mod-hidden {
display: none !important;
}
.lm-TabBar.lm-mod-dragging .lm-TabBar-tab {
position: relative;
}
.lm-TabBar.lm-mod-dragging[data-orientation='horizontal'] .lm-TabBar-tab {
left: 0;
transition: left 150ms ease;
}
.lm-TabBar.lm-mod-dragging[data-orientation='vertical'] .lm-TabBar-tab {
top: 0;
transition: top 150ms ease;
}
.lm-TabBar.lm-mod-dragging .lm-TabBar-tab.lm-mod-dragging {
transition: none;
}
.lm-TabBar-tabLabel .lm-TabBar-tabInput {
user-select: all;
width: 100%;
box-sizing: border-box;
background: inherit;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
.lm-TabPanel-tabBar {
z-index: 1;
}
.lm-TabPanel-stackedPanel {
z-index: 0;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-Collapse {
display: flex;
flex-direction: column;
align-items: stretch;
}
.jp-Collapse-header {
padding: 1px 12px;
background-color: var(--jp-layout-color1);
border-bottom: solid var(--jp-border-width) var(--jp-border-color2);
color: var(--jp-ui-font-color1);
cursor: pointer;
display: flex;
align-items: center;
font-size: var(--jp-ui-font-size0);
font-weight: 600;
text-transform: uppercase;
user-select: none;
}
.jp-Collapser-icon {
height: 16px;
}
.jp-Collapse-header-collapsed .jp-Collapser-icon {
transform: rotate(-90deg);
margin: auto 0;
}
.jp-Collapser-title {
line-height: 25px;
}
.jp-Collapse-contents {
padding: 0 12px;
background-color: var(--jp-layout-color1);
color: var(--jp-ui-font-color1);
overflow: auto;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/* This file was auto-generated by ensureUiComponents() in @jupyterlab/buildutils */
/**
* (DEPRECATED) Support for consuming icons as CSS background images
*/
/* Icons urls */
:root {
--jp-icon-add-above: url();
--jp-icon-add-below: url();
--jp-icon-add: url();
--jp-icon-bell: url();
--jp-icon-bug-dot: url();
--jp-icon-bug: url();
--jp-icon-build: url();
--jp-icon-caret-down-empty-thin: url();
--jp-icon-caret-down-empty: url();
--jp-icon-caret-down: url();
--jp-icon-caret-left: url();
--jp-icon-caret-right: url();
--jp-icon-caret-up-empty-thin: url();
--jp-icon-caret-up: url();
--jp-icon-case-sensitive: url();
--jp-icon-check: url();
--jp-icon-circle-empty: url();
--jp-icon-circle: url();
--jp-icon-clear: url();
--jp-icon-close: url();
--jp-icon-code-check: url();
--jp-icon-code: url();
--jp-icon-collapse-all: url();
--jp-icon-console: url();
--jp-icon-copy: url();
--jp-icon-copyright: url();
--jp-icon-cut: url();
--jp-icon-delete: url();
--jp-icon-download: url();
--jp-icon-duplicate: url();
--jp-icon-edit: url();
--jp-icon-ellipses: url();
--jp-icon-error: url();
--jp-icon-expand-all: url();
--jp-icon-extension: url();
--jp-icon-fast-forward: url();
--jp-icon-file-upload: url();
--jp-icon-file: url();
--jp-icon-filter-dot: url();
--jp-icon-filter-list: url();
--jp-icon-filter: url();
--jp-icon-folder-favorite: url();
--jp-icon-folder: url();
--jp-icon-home: url();
--jp-icon-html5: url();
--jp-icon-image: url();
--jp-icon-info: url();
--jp-icon-inspector: url();
--jp-icon-json: url();
--jp-icon-julia: url();
--jp-icon-jupyter-favicon: url();
--jp-icon-jupyter: url();
--jp-icon-jupyterlab-wordmark: url();
--jp-icon-kernel: url();
--jp-icon-keyboard: url();
--jp-icon-launch: url();
--jp-icon-launcher: url();
--jp-icon-line-form: url();
--jp-icon-link: url();
--jp-icon-list: url();
--jp-icon-markdown: url();
--jp-icon-move-down: url();
--jp-icon-move-up: url();
--jp-icon-new-folder: url();
--jp-icon-not-trusted: url();
--jp-icon-notebook: url();
--jp-icon-numbering: url();
--jp-icon-offline-bolt: url();
--jp-icon-palette: url();
--jp-icon-paste: url();
--jp-icon-pdf: url();
--jp-icon-python: url();
--jp-icon-r-kernel: url();
--jp-icon-react: url();
--jp-icon-redo: url();
--jp-icon-refresh: url();
--jp-icon-regex: url();
--jp-icon-run: url();
--jp-icon-running: url();
--jp-icon-save: url();
--jp-icon-search: url();
--jp-icon-settings: url();
--jp-icon-share: url();
--jp-icon-spreadsheet: url();
--jp-icon-stop: url();
--jp-icon-tab: url();
--jp-icon-table-rows: url();
--jp-icon-tag: url();
--jp-icon-terminal: url();
--jp-icon-text-editor: url();
--jp-icon-toc: url();
--jp-icon-tree-view: url();
--jp-icon-trusted: url();
--jp-icon-undo: url();
--jp-icon-user: url();
--jp-icon-users: url();
--jp-icon-vega: url();
--jp-icon-word: url();
--jp-icon-yaml: url();
}
/* Icon CSS class declarations */
.jp-AddAboveIcon {
background-image: var(--jp-icon-add-above);
}
.jp-AddBelowIcon {
background-image: var(--jp-icon-add-below);
}
.jp-AddIcon {
background-image: var(--jp-icon-add);
}
.jp-BellIcon {
background-image: var(--jp-icon-bell);
}
.jp-BugDotIcon {
background-image: var(--jp-icon-bug-dot);
}
.jp-BugIcon {
background-image: var(--jp-icon-bug);
}
.jp-BuildIcon {
background-image: var(--jp-icon-build);
}
.jp-CaretDownEmptyIcon {
background-image: var(--jp-icon-caret-down-empty);
}
.jp-CaretDownEmptyThinIcon {
background-image: var(--jp-icon-caret-down-empty-thin);
}
.jp-CaretDownIcon {
background-image: var(--jp-icon-caret-down);
}
.jp-CaretLeftIcon {
background-image: var(--jp-icon-caret-left);
}
.jp-CaretRightIcon {
background-image: var(--jp-icon-caret-right);
}
.jp-CaretUpEmptyThinIcon {
background-image: var(--jp-icon-caret-up-empty-thin);
}
.jp-CaretUpIcon {
background-image: var(--jp-icon-caret-up);
}
.jp-CaseSensitiveIcon {
background-image: var(--jp-icon-case-sensitive);
}
.jp-CheckIcon {
background-image: var(--jp-icon-check);
}
.jp-CircleEmptyIcon {
background-image: var(--jp-icon-circle-empty);
}
.jp-CircleIcon {
background-image: var(--jp-icon-circle);
}
.jp-ClearIcon {
background-image: var(--jp-icon-clear);
}
.jp-CloseIcon {
background-image: var(--jp-icon-close);
}
.jp-CodeCheckIcon {
background-image: var(--jp-icon-code-check);
}
.jp-CodeIcon {
background-image: var(--jp-icon-code);
}
.jp-CollapseAllIcon {
background-image: var(--jp-icon-collapse-all);
}
.jp-ConsoleIcon {
background-image: var(--jp-icon-console);
}
.jp-CopyIcon {
background-image: var(--jp-icon-copy);
}
.jp-CopyrightIcon {
background-image: var(--jp-icon-copyright);
}
.jp-CutIcon {
background-image: var(--jp-icon-cut);
}
.jp-DeleteIcon {
background-image: var(--jp-icon-delete);
}
.jp-DownloadIcon {
background-image: var(--jp-icon-download);
}
.jp-DuplicateIcon {
background-image: var(--jp-icon-duplicate);
}
.jp-EditIcon {
background-image: var(--jp-icon-edit);
}
.jp-EllipsesIcon {
background-image: var(--jp-icon-ellipses);
}
.jp-ErrorIcon {
background-image: var(--jp-icon-error);
}
.jp-ExpandAllIcon {
background-image: var(--jp-icon-expand-all);
}
.jp-ExtensionIcon {
background-image: var(--jp-icon-extension);
}
.jp-FastForwardIcon {
background-image: var(--jp-icon-fast-forward);
}
.jp-FileIcon {
background-image: var(--jp-icon-file);
}
.jp-FileUploadIcon {
background-image: var(--jp-icon-file-upload);
}
.jp-FilterDotIcon {
background-image: var(--jp-icon-filter-dot);
}
.jp-FilterIcon {
background-image: var(--jp-icon-filter);
}
.jp-FilterListIcon {
background-image: var(--jp-icon-filter-list);
}
.jp-FolderFavoriteIcon {
background-image: var(--jp-icon-folder-favorite);
}
.jp-FolderIcon {
background-image: var(--jp-icon-folder);
}
.jp-HomeIcon {
background-image: var(--jp-icon-home);
}
.jp-Html5Icon {
background-image: var(--jp-icon-html5);
}
.jp-ImageIcon {
background-image: var(--jp-icon-image);
}
.jp-InfoIcon {
background-image: var(--jp-icon-info);
}
.jp-InspectorIcon {
background-image: var(--jp-icon-inspector);
}
.jp-JsonIcon {
background-image: var(--jp-icon-json);
}
.jp-JuliaIcon {
background-image: var(--jp-icon-julia);
}
.jp-JupyterFaviconIcon {
background-image: var(--jp-icon-jupyter-favicon);
}
.jp-JupyterIcon {
background-image: var(--jp-icon-jupyter);
}
.jp-JupyterlabWordmarkIcon {
background-image: var(--jp-icon-jupyterlab-wordmark);
}
.jp-KernelIcon {
background-image: var(--jp-icon-kernel);
}
.jp-KeyboardIcon {
background-image: var(--jp-icon-keyboard);
}
.jp-LaunchIcon {
background-image: var(--jp-icon-launch);
}
.jp-LauncherIcon {
background-image: var(--jp-icon-launcher);
}
.jp-LineFormIcon {
background-image: var(--jp-icon-line-form);
}
.jp-LinkIcon {
background-image: var(--jp-icon-link);
}
.jp-ListIcon {
background-image: var(--jp-icon-list);
}
.jp-MarkdownIcon {
background-image: var(--jp-icon-markdown);
}
.jp-MoveDownIcon {
background-image: var(--jp-icon-move-down);
}
.jp-MoveUpIcon {
background-image: var(--jp-icon-move-up);
}
.jp-NewFolderIcon {
background-image: var(--jp-icon-new-folder);
}
.jp-NotTrustedIcon {
background-image: var(--jp-icon-not-trusted);
}
.jp-NotebookIcon {
background-image: var(--jp-icon-notebook);
}
.jp-NumberingIcon {
background-image: var(--jp-icon-numbering);
}
.jp-OfflineBoltIcon {
background-image: var(--jp-icon-offline-bolt);
}
.jp-PaletteIcon {
background-image: var(--jp-icon-palette);
}
.jp-PasteIcon {
background-image: var(--jp-icon-paste);
}
.jp-PdfIcon {
background-image: var(--jp-icon-pdf);
}
.jp-PythonIcon {
background-image: var(--jp-icon-python);
}
.jp-RKernelIcon {
background-image: var(--jp-icon-r-kernel);
}
.jp-ReactIcon {
background-image: var(--jp-icon-react);
}
.jp-RedoIcon {
background-image: var(--jp-icon-redo);
}
.jp-RefreshIcon {
background-image: var(--jp-icon-refresh);
}
.jp-RegexIcon {
background-image: var(--jp-icon-regex);
}
.jp-RunIcon {
background-image: var(--jp-icon-run);
}
.jp-RunningIcon {
background-image: var(--jp-icon-running);
}
.jp-SaveIcon {
background-image: var(--jp-icon-save);
}
.jp-SearchIcon {
background-image: var(--jp-icon-search);
}
.jp-SettingsIcon {
background-image: var(--jp-icon-settings);
}
.jp-ShareIcon {
background-image: var(--jp-icon-share);
}
.jp-SpreadsheetIcon {
background-image: var(--jp-icon-spreadsheet);
}
.jp-StopIcon {
background-image: var(--jp-icon-stop);
}
.jp-TabIcon {
background-image: var(--jp-icon-tab);
}
.jp-TableRowsIcon {
background-image: var(--jp-icon-table-rows);
}
.jp-TagIcon {
background-image: var(--jp-icon-tag);
}
.jp-TerminalIcon {
background-image: var(--jp-icon-terminal);
}
.jp-TextEditorIcon {
background-image: var(--jp-icon-text-editor);
}
.jp-TocIcon {
background-image: var(--jp-icon-toc);
}
.jp-TreeViewIcon {
background-image: var(--jp-icon-tree-view);
}
.jp-TrustedIcon {
background-image: var(--jp-icon-trusted);
}
.jp-UndoIcon {
background-image: var(--jp-icon-undo);
}
.jp-UserIcon {
background-image: var(--jp-icon-user);
}
.jp-UsersIcon {
background-image: var(--jp-icon-users);
}
.jp-VegaIcon {
background-image: var(--jp-icon-vega);
}
.jp-WordIcon {
background-image: var(--jp-icon-word);
}
.jp-YamlIcon {
background-image: var(--jp-icon-yaml);
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/**
* (DEPRECATED) Support for consuming icons as CSS background images
*/
.jp-Icon,
.jp-MaterialIcon {
background-position: center;
background-repeat: no-repeat;
background-size: 16px;
min-width: 16px;
min-height: 16px;
}
.jp-Icon-cover {
background-position: center;
background-repeat: no-repeat;
background-size: cover;
}
/**
* (DEPRECATED) Support for specific CSS icon sizes
*/
.jp-Icon-16 {
background-size: 16px;
min-width: 16px;
min-height: 16px;
}
.jp-Icon-18 {
background-size: 18px;
min-width: 18px;
min-height: 18px;
}
.jp-Icon-20 {
background-size: 20px;
min-width: 20px;
min-height: 20px;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.lm-TabBar .lm-TabBar-addButton {
align-items: center;
display: flex;
padding: 4px;
padding-bottom: 5px;
margin-right: 1px;
background-color: var(--jp-layout-color2);
}
.lm-TabBar .lm-TabBar-addButton:hover {
background-color: var(--jp-layout-color1);
}
.lm-DockPanel-tabBar .lm-TabBar-tab {
width: var(--jp-private-horizontal-tab-width);
}
.lm-DockPanel-tabBar .lm-TabBar-content {
flex: unset;
}
.lm-DockPanel-tabBar[data-orientation='horizontal'] {
flex: 1 1 auto;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/**
* Support for icons as inline SVG HTMLElements
*/
/* recolor the primary elements of an icon */
.jp-icon0[fill] {
fill: var(--jp-inverse-layout-color0);
}
.jp-icon1[fill] {
fill: var(--jp-inverse-layout-color1);
}
.jp-icon2[fill] {
fill: var(--jp-inverse-layout-color2);
}
.jp-icon3[fill] {
fill: var(--jp-inverse-layout-color3);
}
.jp-icon4[fill] {
fill: var(--jp-inverse-layout-color4);
}
.jp-icon0[stroke] {
stroke: var(--jp-inverse-layout-color0);
}
.jp-icon1[stroke] {
stroke: var(--jp-inverse-layout-color1);
}
.jp-icon2[stroke] {
stroke: var(--jp-inverse-layout-color2);
}
.jp-icon3[stroke] {
stroke: var(--jp-inverse-layout-color3);
}
.jp-icon4[stroke] {
stroke: var(--jp-inverse-layout-color4);
}
/* recolor the accent elements of an icon */
.jp-icon-accent0[fill] {
fill: var(--jp-layout-color0);
}
.jp-icon-accent1[fill] {
fill: var(--jp-layout-color1);
}
.jp-icon-accent2[fill] {
fill: var(--jp-layout-color2);
}
.jp-icon-accent3[fill] {
fill: var(--jp-layout-color3);
}
.jp-icon-accent4[fill] {
fill: var(--jp-layout-color4);
}
.jp-icon-accent0[stroke] {
stroke: var(--jp-layout-color0);
}
.jp-icon-accent1[stroke] {
stroke: var(--jp-layout-color1);
}
.jp-icon-accent2[stroke] {
stroke: var(--jp-layout-color2);
}
.jp-icon-accent3[stroke] {
stroke: var(--jp-layout-color3);
}
.jp-icon-accent4[stroke] {
stroke: var(--jp-layout-color4);
}
/* set the color of an icon to transparent */
.jp-icon-none[fill] {
fill: none;
}
.jp-icon-none[stroke] {
stroke: none;
}
/* brand icon colors. Same for light and dark */
.jp-icon-brand0[fill] {
fill: var(--jp-brand-color0);
}
.jp-icon-brand1[fill] {
fill: var(--jp-brand-color1);
}
.jp-icon-brand2[fill] {
fill: var(--jp-brand-color2);
}
.jp-icon-brand3[fill] {
fill: var(--jp-brand-color3);
}
.jp-icon-brand4[fill] {
fill: var(--jp-brand-color4);
}
.jp-icon-brand0[stroke] {
stroke: var(--jp-brand-color0);
}
.jp-icon-brand1[stroke] {
stroke: var(--jp-brand-color1);
}
.jp-icon-brand2[stroke] {
stroke: var(--jp-brand-color2);
}
.jp-icon-brand3[stroke] {
stroke: var(--jp-brand-color3);
}
.jp-icon-brand4[stroke] {
stroke: var(--jp-brand-color4);
}
/* warn icon colors. Same for light and dark */
.jp-icon-warn0[fill] {
fill: var(--jp-warn-color0);
}
.jp-icon-warn1[fill] {
fill: var(--jp-warn-color1);
}
.jp-icon-warn2[fill] {
fill: var(--jp-warn-color2);
}
.jp-icon-warn3[fill] {
fill: var(--jp-warn-color3);
}
.jp-icon-warn0[stroke] {
stroke: var(--jp-warn-color0);
}
.jp-icon-warn1[stroke] {
stroke: var(--jp-warn-color1);
}
.jp-icon-warn2[stroke] {
stroke: var(--jp-warn-color2);
}
.jp-icon-warn3[stroke] {
stroke: var(--jp-warn-color3);
}
/* icon colors that contrast well with each other and most backgrounds */
.jp-icon-contrast0[fill] {
fill: var(--jp-icon-contrast-color0);
}
.jp-icon-contrast1[fill] {
fill: var(--jp-icon-contrast-color1);
}
.jp-icon-contrast2[fill] {
fill: var(--jp-icon-contrast-color2);
}
.jp-icon-contrast3[fill] {
fill: var(--jp-icon-contrast-color3);
}
.jp-icon-contrast0[stroke] {
stroke: var(--jp-icon-contrast-color0);
}
.jp-icon-contrast1[stroke] {
stroke: var(--jp-icon-contrast-color1);
}
.jp-icon-contrast2[stroke] {
stroke: var(--jp-icon-contrast-color2);
}
.jp-icon-contrast3[stroke] {
stroke: var(--jp-icon-contrast-color3);
}
.jp-icon-dot[fill] {
fill: var(--jp-warn-color0);
}
.jp-jupyter-icon-color[fill] {
fill: var(--jp-jupyter-icon-color, var(--jp-warn-color0));
}
.jp-notebook-icon-color[fill] {
fill: var(--jp-notebook-icon-color, var(--jp-warn-color0));
}
.jp-json-icon-color[fill] {
fill: var(--jp-json-icon-color, var(--jp-warn-color1));
}
.jp-console-icon-color[fill] {
fill: var(--jp-console-icon-color, white);
}
.jp-console-icon-background-color[fill] {
fill: var(--jp-console-icon-background-color, var(--jp-brand-color1));
}
.jp-terminal-icon-color[fill] {
fill: var(--jp-terminal-icon-color, var(--jp-layout-color2));
}
.jp-terminal-icon-background-color[fill] {
fill: var(
--jp-terminal-icon-background-color,
var(--jp-inverse-layout-color2)
);
}
.jp-text-editor-icon-color[fill] {
fill: var(--jp-text-editor-icon-color, var(--jp-inverse-layout-color3));
}
.jp-inspector-icon-color[fill] {
fill: var(--jp-inspector-icon-color, var(--jp-inverse-layout-color3));
}
/* CSS for icons in selected filebrowser listing items */
.jp-DirListing-item.jp-mod-selected .jp-icon-selectable[fill] {
fill: #fff;
}
.jp-DirListing-item.jp-mod-selected .jp-icon-selectable-inverse[fill] {
fill: var(--jp-brand-color1);
}
/* stylelint-disable selector-max-class, selector-max-compound-selectors */
/**
* TODO: come up with non css-hack solution for showing the busy icon on top
* of the close icon
* CSS for complex behavior of close icon of tabs in the main area tabbar
*/
.lm-DockPanel-tabBar
.lm-TabBar-tab.lm-mod-closable.jp-mod-dirty
> .lm-TabBar-tabCloseIcon
> :not(:hover)
> .jp-icon3[fill] {
fill: none;
}
.lm-DockPanel-tabBar
.lm-TabBar-tab.lm-mod-closable.jp-mod-dirty
> .lm-TabBar-tabCloseIcon
> :not(:hover)
> .jp-icon-busy[fill] {
fill: var(--jp-inverse-layout-color3);
}
/* stylelint-enable selector-max-class, selector-max-compound-selectors */
/* CSS for icons in status bar */
#jp-main-statusbar .jp-mod-selected .jp-icon-selectable[fill] {
fill: #fff;
}
#jp-main-statusbar .jp-mod-selected .jp-icon-selectable-inverse[fill] {
fill: var(--jp-brand-color1);
}
/* special handling for splash icon CSS. While the theme CSS reloads during
splash, the splash icon can loose theming. To prevent that, we set a
default for its color variable */
:root {
--jp-warn-color0: var(--md-orange-700);
}
/* not sure what to do with this one, used in filebrowser listing */
.jp-DragIcon {
margin-right: 4px;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/**
* Support for alt colors for icons as inline SVG HTMLElements
*/
/* alt recolor the primary elements of an icon */
.jp-icon-alt .jp-icon0[fill] {
fill: var(--jp-layout-color0);
}
.jp-icon-alt .jp-icon1[fill] {
fill: var(--jp-layout-color1);
}
.jp-icon-alt .jp-icon2[fill] {
fill: var(--jp-layout-color2);
}
.jp-icon-alt .jp-icon3[fill] {
fill: var(--jp-layout-color3);
}
.jp-icon-alt .jp-icon4[fill] {
fill: var(--jp-layout-color4);
}
.jp-icon-alt .jp-icon0[stroke] {
stroke: var(--jp-layout-color0);
}
.jp-icon-alt .jp-icon1[stroke] {
stroke: var(--jp-layout-color1);
}
.jp-icon-alt .jp-icon2[stroke] {
stroke: var(--jp-layout-color2);
}
.jp-icon-alt .jp-icon3[stroke] {
stroke: var(--jp-layout-color3);
}
.jp-icon-alt .jp-icon4[stroke] {
stroke: var(--jp-layout-color4);
}
/* alt recolor the accent elements of an icon */
.jp-icon-alt .jp-icon-accent0[fill] {
fill: var(--jp-inverse-layout-color0);
}
.jp-icon-alt .jp-icon-accent1[fill] {
fill: var(--jp-inverse-layout-color1);
}
.jp-icon-alt .jp-icon-accent2[fill] {
fill: var(--jp-inverse-layout-color2);
}
.jp-icon-alt .jp-icon-accent3[fill] {
fill: var(--jp-inverse-layout-color3);
}
.jp-icon-alt .jp-icon-accent4[fill] {
fill: var(--jp-inverse-layout-color4);
}
.jp-icon-alt .jp-icon-accent0[stroke] {
stroke: var(--jp-inverse-layout-color0);
}
.jp-icon-alt .jp-icon-accent1[stroke] {
stroke: var(--jp-inverse-layout-color1);
}
.jp-icon-alt .jp-icon-accent2[stroke] {
stroke: var(--jp-inverse-layout-color2);
}
.jp-icon-alt .jp-icon-accent3[stroke] {
stroke: var(--jp-inverse-layout-color3);
}
.jp-icon-alt .jp-icon-accent4[stroke] {
stroke: var(--jp-inverse-layout-color4);
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-icon-hoverShow:not(:hover) .jp-icon-hoverShow-content {
display: none !important;
}
/**
* Support for hover colors for icons as inline SVG HTMLElements
*/
/**
* regular colors
*/
/* recolor the primary elements of an icon */
.jp-icon-hover :hover .jp-icon0-hover[fill] {
fill: var(--jp-inverse-layout-color0);
}
.jp-icon-hover :hover .jp-icon1-hover[fill] {
fill: var(--jp-inverse-layout-color1);
}
.jp-icon-hover :hover .jp-icon2-hover[fill] {
fill: var(--jp-inverse-layout-color2);
}
.jp-icon-hover :hover .jp-icon3-hover[fill] {
fill: var(--jp-inverse-layout-color3);
}
.jp-icon-hover :hover .jp-icon4-hover[fill] {
fill: var(--jp-inverse-layout-color4);
}
.jp-icon-hover :hover .jp-icon0-hover[stroke] {
stroke: var(--jp-inverse-layout-color0);
}
.jp-icon-hover :hover .jp-icon1-hover[stroke] {
stroke: var(--jp-inverse-layout-color1);
}
.jp-icon-hover :hover .jp-icon2-hover[stroke] {
stroke: var(--jp-inverse-layout-color2);
}
.jp-icon-hover :hover .jp-icon3-hover[stroke] {
stroke: var(--jp-inverse-layout-color3);
}
.jp-icon-hover :hover .jp-icon4-hover[stroke] {
stroke: var(--jp-inverse-layout-color4);
}
/* recolor the accent elements of an icon */
.jp-icon-hover :hover .jp-icon-accent0-hover[fill] {
fill: var(--jp-layout-color0);
}
.jp-icon-hover :hover .jp-icon-accent1-hover[fill] {
fill: var(--jp-layout-color1);
}
.jp-icon-hover :hover .jp-icon-accent2-hover[fill] {
fill: var(--jp-layout-color2);
}
.jp-icon-hover :hover .jp-icon-accent3-hover[fill] {
fill: var(--jp-layout-color3);
}
.jp-icon-hover :hover .jp-icon-accent4-hover[fill] {
fill: var(--jp-layout-color4);
}
.jp-icon-hover :hover .jp-icon-accent0-hover[stroke] {
stroke: var(--jp-layout-color0);
}
.jp-icon-hover :hover .jp-icon-accent1-hover[stroke] {
stroke: var(--jp-layout-color1);
}
.jp-icon-hover :hover .jp-icon-accent2-hover[stroke] {
stroke: var(--jp-layout-color2);
}
.jp-icon-hover :hover .jp-icon-accent3-hover[stroke] {
stroke: var(--jp-layout-color3);
}
.jp-icon-hover :hover .jp-icon-accent4-hover[stroke] {
stroke: var(--jp-layout-color4);
}
/* set the color of an icon to transparent */
.jp-icon-hover :hover .jp-icon-none-hover[fill] {
fill: none;
}
.jp-icon-hover :hover .jp-icon-none-hover[stroke] {
stroke: none;
}
/**
* inverse colors
*/
/* inverse recolor the primary elements of an icon */
.jp-icon-hover.jp-icon-alt :hover .jp-icon0-hover[fill] {
fill: var(--jp-layout-color0);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon1-hover[fill] {
fill: var(--jp-layout-color1);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon2-hover[fill] {
fill: var(--jp-layout-color2);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon3-hover[fill] {
fill: var(--jp-layout-color3);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon4-hover[fill] {
fill: var(--jp-layout-color4);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon0-hover[stroke] {
stroke: var(--jp-layout-color0);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon1-hover[stroke] {
stroke: var(--jp-layout-color1);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon2-hover[stroke] {
stroke: var(--jp-layout-color2);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon3-hover[stroke] {
stroke: var(--jp-layout-color3);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon4-hover[stroke] {
stroke: var(--jp-layout-color4);
}
/* inverse recolor the accent elements of an icon */
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent0-hover[fill] {
fill: var(--jp-inverse-layout-color0);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent1-hover[fill] {
fill: var(--jp-inverse-layout-color1);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent2-hover[fill] {
fill: var(--jp-inverse-layout-color2);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent3-hover[fill] {
fill: var(--jp-inverse-layout-color3);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent4-hover[fill] {
fill: var(--jp-inverse-layout-color4);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent0-hover[stroke] {
stroke: var(--jp-inverse-layout-color0);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent1-hover[stroke] {
stroke: var(--jp-inverse-layout-color1);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent2-hover[stroke] {
stroke: var(--jp-inverse-layout-color2);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent3-hover[stroke] {
stroke: var(--jp-inverse-layout-color3);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent4-hover[stroke] {
stroke: var(--jp-inverse-layout-color4);
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-IFrame {
width: 100%;
height: 100%;
}
.jp-IFrame > iframe {
border: none;
}
/*
When drag events occur, `lm-mod-override-cursor` is added to the body.
Because iframes steal all cursor events, the following two rules are necessary
to suppress pointer events while resize drags are occurring. There may be a
better solution to this problem.
*/
body.lm-mod-override-cursor .jp-IFrame {
position: relative;
}
body.lm-mod-override-cursor .jp-IFrame::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: transparent;
}
/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2016, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-HoverBox {
position: fixed;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-FormGroup-content fieldset {
border: none;
padding: 0;
min-width: 0;
width: 100%;
}
/* stylelint-disable selector-max-type */
.jp-FormGroup-content fieldset .jp-inputFieldWrapper input,
.jp-FormGroup-content fieldset .jp-inputFieldWrapper select,
.jp-FormGroup-content fieldset .jp-inputFieldWrapper textarea {
font-size: var(--jp-content-font-size2);
border-color: var(--jp-input-border-color);
border-style: solid;
border-radius: var(--jp-border-radius);
border-width: 1px;
padding: 6px 8px;
background: none;
color: var(--jp-ui-font-color0);
height: inherit;
}
.jp-FormGroup-content fieldset input[type='checkbox'] {
position: relative;
top: 2px;
margin-left: 0;
}
.jp-FormGroup-content button.jp-mod-styled {
cursor: pointer;
}
.jp-FormGroup-content .checkbox label {
cursor: pointer;
font-size: var(--jp-content-font-size1);
}
.jp-FormGroup-content .jp-root > fieldset > legend {
display: none;
}
.jp-FormGroup-content .jp-root > fieldset > p {
display: none;
}
/** copy of `input.jp-mod-styled:focus` style */
.jp-FormGroup-content fieldset input:focus,
.jp-FormGroup-content fieldset select:focus {
-moz-outline-radius: unset;
outline: var(--jp-border-width) solid var(--md-blue-500);
outline-offset: -1px;
box-shadow: inset 0 0 4px var(--md-blue-300);
}
.jp-FormGroup-content fieldset input:hover:not(:focus),
.jp-FormGroup-content fieldset select:hover:not(:focus) {
background-color: var(--jp-border-color2);
}
/* stylelint-enable selector-max-type */
.jp-FormGroup-content .checkbox .field-description {
/* Disable default description field for checkbox:
because other widgets do not have description fields,
we add descriptions to each widget on the field level.
*/
display: none;
}
.jp-FormGroup-content #root__description {
display: none;
}
.jp-FormGroup-content .jp-modifiedIndicator {
width: 5px;
background-color: var(--jp-brand-color2);
margin-top: 0;
margin-left: calc(var(--jp-private-settingeditor-modifier-indent) * -1);
flex-shrink: 0;
}
.jp-FormGroup-content .jp-modifiedIndicator.jp-errorIndicator {
background-color: var(--jp-error-color0);
margin-right: 0.5em;
}
/* RJSF ARRAY style */
.jp-arrayFieldWrapper legend {
font-size: var(--jp-content-font-size2);
color: var(--jp-ui-font-color0);
flex-basis: 100%;
padding: 4px 0;
font-weight: var(--jp-content-heading-font-weight);
border-bottom: 1px solid var(--jp-border-color2);
}
.jp-arrayFieldWrapper .field-description {
padding: 4px 0;
white-space: pre-wrap;
}
.jp-arrayFieldWrapper .array-item {
width: 100%;
border: 1px solid var(--jp-border-color2);
border-radius: 4px;
margin: 4px;
}
.jp-ArrayOperations {
display: flex;
margin-left: 8px;
}
.jp-ArrayOperationsButton {
margin: 2px;
}
.jp-ArrayOperationsButton .jp-icon3[fill] {
fill: var(--jp-ui-font-color0);
}
button.jp-ArrayOperationsButton.jp-mod-styled:disabled {
cursor: not-allowed;
opacity: 0.5;
}
/* RJSF form validation error */
.jp-FormGroup-content .validationErrors {
color: var(--jp-error-color0);
}
/* Hide panel level error as duplicated the field level error */
.jp-FormGroup-content .panel.errors {
display: none;
}
/* RJSF normal content (settings-editor) */
.jp-FormGroup-contentNormal {
display: flex;
align-items: center;
flex-wrap: wrap;
}
.jp-FormGroup-contentNormal .jp-FormGroup-contentItem {
margin-left: 7px;
color: var(--jp-ui-font-color0);
}
.jp-FormGroup-contentNormal .jp-FormGroup-description {
flex-basis: 100%;
padding: 4px 7px;
}
.jp-FormGroup-contentNormal .jp-FormGroup-default {
flex-basis: 100%;
padding: 4px 7px;
}
.jp-FormGroup-contentNormal .jp-FormGroup-fieldLabel {
font-size: var(--jp-content-font-size1);
font-weight: normal;
min-width: 120px;
}
.jp-FormGroup-contentNormal fieldset:not(:first-child) {
margin-left: 7px;
}
.jp-FormGroup-contentNormal .field-array-of-string .array-item {
/* Display `jp-ArrayOperations` buttons side-by-side with content except
for small screens where flex-wrap will place them one below the other.
*/
display: flex;
align-items: center;
flex-wrap: wrap;
}
.jp-FormGroup-contentNormal .jp-objectFieldWrapper .form-group {
padding: 2px 8px 2px var(--jp-private-settingeditor-modifier-indent);
margin-top: 2px;
}
/* RJSF compact content (metadata-form) */
.jp-FormGroup-content.jp-FormGroup-contentCompact {
width: 100%;
}
.jp-FormGroup-contentCompact .form-group {
display: flex;
padding: 0.5em 0.2em 0.5em 0;
}
.jp-FormGroup-contentCompact
.jp-FormGroup-compactTitle
.jp-FormGroup-description {
font-size: var(--jp-ui-font-size1);
color: var(--jp-ui-font-color2);
}
.jp-FormGroup-contentCompact .jp-FormGroup-fieldLabel {
padding-bottom: 0.3em;
}
.jp-FormGroup-contentCompact .jp-inputFieldWrapper .form-control {
width: 100%;
box-sizing: border-box;
}
.jp-FormGroup-contentCompact .jp-arrayFieldWrapper .jp-FormGroup-compactTitle {
padding-bottom: 7px;
}
.jp-FormGroup-contentCompact
.jp-objectFieldWrapper
.jp-objectFieldWrapper
.form-group {
padding: 2px 8px 2px var(--jp-private-settingeditor-modifier-indent);
margin-top: 2px;
}
.jp-FormGroup-contentCompact ul.error-detail {
margin-block-start: 0.5em;
margin-block-end: 0.5em;
padding-inline-start: 1em;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
.jp-SidePanel {
display: flex;
flex-direction: column;
min-width: var(--jp-sidebar-min-width);
overflow-y: auto;
color: var(--jp-ui-font-color1);
background: var(--jp-layout-color1);
font-size: var(--jp-ui-font-size1);
}
.jp-SidePanel-header {
flex: 0 0 auto;
display: flex;
border-bottom: var(--jp-border-width) solid var(--jp-border-color2);
font-size: var(--jp-ui-font-size0);
font-weight: 600;
letter-spacing: 1px;
margin: 0;
padding: 2px;
text-transform: uppercase;
}
.jp-SidePanel-toolbar {
flex: 0 0 auto;
}
.jp-SidePanel-content {
flex: 1 1 auto;
}
.jp-SidePanel-toolbar,
.jp-AccordionPanel-toolbar {
height: var(--jp-private-toolbar-height);
}
.jp-SidePanel-toolbar.jp-Toolbar-micro {
display: none;
}
.lm-AccordionPanel .jp-AccordionPanel-title {
box-sizing: border-box;
line-height: 25px;
margin: 0;
display: flex;
align-items: center;
background: var(--jp-layout-color1);
color: var(--jp-ui-font-color1);
border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color);
box-shadow: var(--jp-toolbar-box-shadow);
font-size: var(--jp-ui-font-size0);
}
.jp-AccordionPanel-title {
cursor: pointer;
user-select: none;
-moz-user-select: none;
-webkit-user-select: none;
text-transform: uppercase;
}
.lm-AccordionPanel[data-orientation='horizontal'] > .jp-AccordionPanel-title {
/* Title is rotated for horizontal accordion panel using CSS */
display: block;
transform-origin: top left;
transform: rotate(-90deg) translate(-100%);
}
.jp-AccordionPanel-title .lm-AccordionPanel-titleLabel {
user-select: none;
text-overflow: ellipsis;
white-space: nowrap;
overflow: hidden;
}
.jp-AccordionPanel-title .lm-AccordionPanel-titleCollapser {
transform: rotate(-90deg);
margin: auto 0;
height: 16px;
}
.jp-AccordionPanel-title.lm-mod-expanded .lm-AccordionPanel-titleCollapser {
transform: rotate(0deg);
}
.lm-AccordionPanel .jp-AccordionPanel-toolbar {
background: none;
box-shadow: none;
border: none;
margin-left: auto;
}
.lm-AccordionPanel .lm-SplitPanel-handle:hover {
background: var(--jp-layout-color3);
}
.jp-text-truncated {
overflow: hidden;
text-overflow: ellipsis;
white-space: nowrap;
}
/*-----------------------------------------------------------------------------
| Copyright (c) 2017, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-Spinner {
position: absolute;
display: flex;
justify-content: center;
align-items: center;
z-index: 10;
left: 0;
top: 0;
width: 100%;
height: 100%;
background: var(--jp-layout-color0);
outline: none;
}
.jp-SpinnerContent {
font-size: 10px;
margin: 50px auto;
text-indent: -9999em;
width: 3em;
height: 3em;
border-radius: 50%;
background: var(--jp-brand-color3);
background: linear-gradient(
to right,
#f37626 10%,
rgba(255, 255, 255, 0) 42%
);
position: relative;
animation: load3 1s infinite linear, fadeIn 1s;
}
.jp-SpinnerContent::before {
width: 50%;
height: 50%;
background: #f37626;
border-radius: 100% 0 0;
position: absolute;
top: 0;
left: 0;
content: '';
}
.jp-SpinnerContent::after {
background: var(--jp-layout-color0);
width: 75%;
height: 75%;
border-radius: 50%;
content: '';
margin: auto;
position: absolute;
top: 0;
left: 0;
bottom: 0;
right: 0;
}
@keyframes fadeIn {
0% {
opacity: 0;
}
100% {
opacity: 1;
}
}
@keyframes load3 {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2017, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
button.jp-mod-styled {
font-size: var(--jp-ui-font-size1);
color: var(--jp-ui-font-color0);
border: none;
box-sizing: border-box;
text-align: center;
line-height: 32px;
height: 32px;
padding: 0 12px;
letter-spacing: 0.8px;
outline: none;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
}
input.jp-mod-styled {
background: var(--jp-input-background);
height: 28px;
box-sizing: border-box;
border: var(--jp-border-width) solid var(--jp-border-color1);
padding-left: 7px;
padding-right: 7px;
font-size: var(--jp-ui-font-size2);
color: var(--jp-ui-font-color0);
outline: none;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
}
input[type='checkbox'].jp-mod-styled {
appearance: checkbox;
-webkit-appearance: checkbox;
-moz-appearance: checkbox;
height: auto;
}
input.jp-mod-styled:focus {
border: var(--jp-border-width) solid var(--md-blue-500);
box-shadow: inset 0 0 4px var(--md-blue-300);
}
.jp-select-wrapper {
display: flex;
position: relative;
flex-direction: column;
padding: 1px;
background-color: var(--jp-layout-color1);
box-sizing: border-box;
margin-bottom: 12px;
}
.jp-select-wrapper:not(.multiple) {
height: 28px;
}
.jp-select-wrapper.jp-mod-focused select.jp-mod-styled {
border: var(--jp-border-width) solid var(--jp-input-active-border-color);
box-shadow: var(--jp-input-box-shadow);
background-color: var(--jp-input-active-background);
}
select.jp-mod-styled:hover {
cursor: pointer;
color: var(--jp-ui-font-color0);
background-color: var(--jp-input-hover-background);
box-shadow: inset 0 0 1px rgba(0, 0, 0, 0.5);
}
select.jp-mod-styled {
flex: 1 1 auto;
width: 100%;
font-size: var(--jp-ui-font-size2);
background: var(--jp-input-background);
color: var(--jp-ui-font-color0);
padding: 0 25px 0 8px;
border: var(--jp-border-width) solid var(--jp-input-border-color);
border-radius: 0;
outline: none;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
}
select.jp-mod-styled:not([multiple]) {
height: 32px;
}
select.jp-mod-styled[multiple] {
max-height: 200px;
overflow-y: auto;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-switch {
display: flex;
align-items: center;
padding-left: 4px;
padding-right: 4px;
font-size: var(--jp-ui-font-size1);
background-color: transparent;
color: var(--jp-ui-font-color1);
border: none;
height: 20px;
}
.jp-switch:hover {
background-color: var(--jp-layout-color2);
}
.jp-switch-label {
margin-right: 5px;
font-family: var(--jp-ui-font-family);
}
.jp-switch-track {
cursor: pointer;
background-color: var(--jp-switch-color, var(--jp-border-color1));
-webkit-transition: 0.4s;
transition: 0.4s;
border-radius: 34px;
height: 16px;
width: 35px;
position: relative;
}
.jp-switch-track::before {
content: '';
position: absolute;
height: 10px;
width: 10px;
margin: 3px;
left: 0;
background-color: var(--jp-ui-inverse-font-color1);
-webkit-transition: 0.4s;
transition: 0.4s;
border-radius: 50%;
}
.jp-switch[aria-checked='true'] .jp-switch-track {
background-color: var(--jp-switch-true-position-color, var(--jp-warn-color0));
}
.jp-switch[aria-checked='true'] .jp-switch-track::before {
/* track width (35) - margins (3 + 3) - thumb width (10) */
left: 19px;
}
/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2016, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
:root {
--jp-private-toolbar-height: calc(
28px + var(--jp-border-width)
); /* leave 28px for content */
}
.jp-Toolbar {
color: var(--jp-ui-font-color1);
flex: 0 0 auto;
display: flex;
flex-direction: row;
border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color);
box-shadow: var(--jp-toolbar-box-shadow);
background: var(--jp-toolbar-background);
min-height: var(--jp-toolbar-micro-height);
padding: 2px;
z-index: 8;
overflow-x: hidden;
}
/* Toolbar items */
.jp-Toolbar > .jp-Toolbar-item.jp-Toolbar-spacer {
flex-grow: 1;
flex-shrink: 1;
}
.jp-Toolbar-item.jp-Toolbar-kernelStatus {
display: inline-block;
width: 32px;
background-repeat: no-repeat;
background-position: center;
background-size: 16px;
}
.jp-Toolbar > .jp-Toolbar-item {
flex: 0 0 auto;
display: flex;
padding-left: 1px;
padding-right: 1px;
font-size: var(--jp-ui-font-size1);
line-height: var(--jp-private-toolbar-height);
height: 100%;
}
/* Toolbar buttons */
/* This is the div we use to wrap the react component into a Widget */
div.jp-ToolbarButton {
color: transparent;
border: none;
box-sizing: border-box;
outline: none;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
padding: 0;
margin: 0;
}
button.jp-ToolbarButtonComponent {
background: var(--jp-layout-color1);
border: none;
box-sizing: border-box;
outline: none;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
padding: 0 6px;
margin: 0;
height: 24px;
border-radius: var(--jp-border-radius);
display: flex;
align-items: center;
text-align: center;
font-size: 14px;
min-width: unset;
min-height: unset;
}
button.jp-ToolbarButtonComponent:disabled {
opacity: 0.4;
}
button.jp-ToolbarButtonComponent > span {
padding: 0;
flex: 0 0 auto;
}
button.jp-ToolbarButtonComponent .jp-ToolbarButtonComponent-label {
font-size: var(--jp-ui-font-size1);
line-height: 100%;
padding-left: 2px;
color: var(--jp-ui-font-color1);
font-family: var(--jp-ui-font-family);
}
#jp-main-dock-panel[data-mode='single-document']
.jp-MainAreaWidget
> .jp-Toolbar.jp-Toolbar-micro {
padding: 0;
min-height: 0;
}
#jp-main-dock-panel[data-mode='single-document']
.jp-MainAreaWidget
> .jp-Toolbar {
border: none;
box-shadow: none;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
.jp-WindowedPanel-outer {
position: relative;
overflow-y: auto;
}
.jp-WindowedPanel-inner {
position: relative;
}
.jp-WindowedPanel-window {
position: absolute;
left: 0;
right: 0;
overflow: visible;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/* Sibling imports */
body {
color: var(--jp-ui-font-color1);
font-size: var(--jp-ui-font-size1);
}
/* Disable native link decoration styles everywhere outside of dialog boxes */
a {
text-decoration: unset;
color: unset;
}
a:hover {
text-decoration: unset;
color: unset;
}
/* Accessibility for links inside dialog box text */
.jp-Dialog-content a {
text-decoration: revert;
color: var(--jp-content-link-color);
}
.jp-Dialog-content a:hover {
text-decoration: revert;
}
/* Styles for ui-components */
.jp-Button {
color: var(--jp-ui-font-color2);
border-radius: var(--jp-border-radius);
padding: 0 12px;
font-size: var(--jp-ui-font-size1);
/* Copy from blueprint 3 */
display: inline-flex;
flex-direction: row;
border: none;
cursor: pointer;
align-items: center;
justify-content: center;
text-align: left;
vertical-align: middle;
min-height: 30px;
min-width: 30px;
}
.jp-Button:disabled {
cursor: not-allowed;
}
.jp-Button:empty {
padding: 0 !important;
}
.jp-Button.jp-mod-small {
min-height: 24px;
min-width: 24px;
font-size: 12px;
padding: 0 7px;
}
/* Use our own theme for hover styles */
.jp-Button.jp-mod-minimal:hover {
background-color: var(--jp-layout-color2);
}
.jp-Button.jp-mod-minimal {
background: none;
}
.jp-InputGroup {
display: block;
position: relative;
}
.jp-InputGroup input {
box-sizing: border-box;
border: none;
border-radius: 0;
background-color: transparent;
color: var(--jp-ui-font-color0);
box-shadow: inset 0 0 0 var(--jp-border-width) var(--jp-input-border-color);
padding-bottom: 0;
padding-top: 0;
padding-left: 10px;
padding-right: 28px;
position: relative;
width: 100%;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
font-size: 14px;
font-weight: 400;
height: 30px;
line-height: 30px;
outline: none;
vertical-align: middle;
}
.jp-InputGroup input:focus {
box-shadow: inset 0 0 0 var(--jp-border-width)
var(--jp-input-active-box-shadow-color),
inset 0 0 0 3px var(--jp-input-active-box-shadow-color);
}
.jp-InputGroup input:disabled {
cursor: not-allowed;
resize: block;
background-color: var(--jp-layout-color2);
color: var(--jp-ui-font-color2);
}
.jp-InputGroup input:disabled ~ span {
cursor: not-allowed;
color: var(--jp-ui-font-color2);
}
.jp-InputGroup input::placeholder,
input::placeholder {
color: var(--jp-ui-font-color2);
}
.jp-InputGroupAction {
position: absolute;
bottom: 1px;
right: 0;
padding: 6px;
}
.jp-HTMLSelect.jp-DefaultStyle select {
background-color: initial;
border: none;
border-radius: 0;
box-shadow: none;
color: var(--jp-ui-font-color0);
display: block;
font-size: var(--jp-ui-font-size1);
font-family: var(--jp-ui-font-family);
height: 24px;
line-height: 14px;
padding: 0 25px 0 10px;
text-align: left;
-moz-appearance: none;
-webkit-appearance: none;
}
.jp-HTMLSelect.jp-DefaultStyle select:disabled {
background-color: var(--jp-layout-color2);
color: var(--jp-ui-font-color2);
cursor: not-allowed;
resize: block;
}
.jp-HTMLSelect.jp-DefaultStyle select:disabled ~ span {
cursor: not-allowed;
}
/* Use our own theme for hover and option styles */
/* stylelint-disable-next-line selector-max-type */
.jp-HTMLSelect.jp-DefaultStyle select:hover,
.jp-HTMLSelect.jp-DefaultStyle select > option {
background-color: var(--jp-layout-color2);
color: var(--jp-ui-font-color0);
}
select {
box-sizing: border-box;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Styles
|----------------------------------------------------------------------------*/
.jp-StatusBar-Widget {
display: flex;
align-items: center;
background: var(--jp-layout-color2);
min-height: var(--jp-statusbar-height);
justify-content: space-between;
padding: 0 10px;
}
.jp-StatusBar-Left {
display: flex;
align-items: center;
flex-direction: row;
}
.jp-StatusBar-Middle {
display: flex;
align-items: center;
}
.jp-StatusBar-Right {
display: flex;
align-items: center;
flex-direction: row-reverse;
}
.jp-StatusBar-Item {
max-height: var(--jp-statusbar-height);
margin: 0 2px;
height: var(--jp-statusbar-height);
white-space: nowrap;
text-overflow: ellipsis;
color: var(--jp-ui-font-color1);
padding: 0 6px;
}
.jp-mod-highlighted:hover {
background-color: var(--jp-layout-color3);
}
.jp-mod-clicked {
background-color: var(--jp-brand-color1);
}
.jp-mod-clicked:hover {
background-color: var(--jp-brand-color0);
}
.jp-mod-clicked .jp-StatusBar-TextItem {
color: var(--jp-ui-inverse-font-color1);
}
.jp-StatusBar-HoverItem {
box-shadow: '0px 4px 4px rgba(0, 0, 0, 0.25)';
}
.jp-StatusBar-TextItem {
font-size: var(--jp-ui-font-size1);
font-family: var(--jp-ui-font-family);
line-height: 24px;
color: var(--jp-ui-font-color1);
}
.jp-StatusBar-GroupItem {
display: flex;
align-items: center;
flex-direction: row;
}
.jp-Statusbar-ProgressCircle svg {
display: block;
margin: 0 auto;
width: 16px;
height: 24px;
align-self: normal;
}
.jp-Statusbar-ProgressCircle path {
fill: var(--jp-inverse-layout-color3);
}
.jp-Statusbar-ProgressBar-progress-bar {
height: 10px;
width: 100px;
border: solid 0.25px var(--jp-brand-color2);
border-radius: 3px;
overflow: hidden;
align-self: center;
}
.jp-Statusbar-ProgressBar-progress-bar > div {
background-color: var(--jp-brand-color2);
background-image: linear-gradient(
-45deg,
rgba(255, 255, 255, 0.2) 25%,
transparent 25%,
transparent 50%,
rgba(255, 255, 255, 0.2) 50%,
rgba(255, 255, 255, 0.2) 75%,
transparent 75%,
transparent
);
background-size: 40px 40px;
float: left;
width: 0%;
height: 100%;
font-size: 12px;
line-height: 14px;
color: #fff;
text-align: center;
animation: jp-Statusbar-ExecutionTime-progress-bar 2s linear infinite;
}
.jp-Statusbar-ProgressBar-progress-bar p {
color: var(--jp-ui-font-color1);
font-family: var(--jp-ui-font-family);
font-size: var(--jp-ui-font-size1);
line-height: 10px;
width: 100px;
}
@keyframes jp-Statusbar-ExecutionTime-progress-bar {
0% {
background-position: 0 0;
}
100% {
background-position: 40px 40px;
}
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Variables
|----------------------------------------------------------------------------*/
:root {
--jp-private-commandpalette-search-height: 28px;
}
/*-----------------------------------------------------------------------------
| Overall styles
|----------------------------------------------------------------------------*/
.lm-CommandPalette {
padding-bottom: 0;
color: var(--jp-ui-font-color1);
background: var(--jp-layout-color1);
/* This is needed so that all font sizing of children done in ems is
* relative to this base size */
font-size: var(--jp-ui-font-size1);
}
/*-----------------------------------------------------------------------------
| Modal variant
|----------------------------------------------------------------------------*/
.jp-ModalCommandPalette {
position: absolute;
z-index: 10000;
top: 38px;
left: 30%;
margin: 0;
padding: 4px;
width: 40%;
box-shadow: var(--jp-elevation-z4);
border-radius: 4px;
background: var(--jp-layout-color0);
}
.jp-ModalCommandPalette .lm-CommandPalette {
max-height: 40vh;
}
.jp-ModalCommandPalette .lm-CommandPalette .lm-close-icon::after {
display: none;
}
.jp-ModalCommandPalette .lm-CommandPalette .lm-CommandPalette-header {
display: none;
}
.jp-ModalCommandPalette .lm-CommandPalette .lm-CommandPalette-item {
margin-left: 4px;
margin-right: 4px;
}
.jp-ModalCommandPalette
.lm-CommandPalette
.lm-CommandPalette-item.lm-mod-disabled {
display: none;
}
/*-----------------------------------------------------------------------------
| Search
|----------------------------------------------------------------------------*/
.lm-CommandPalette-search {
padding: 4px;
background-color: var(--jp-layout-color1);
z-index: 2;
}
.lm-CommandPalette-wrapper {
overflow: overlay;
padding: 0 9px;
background-color: var(--jp-input-active-background);
height: 30px;
box-shadow: inset 0 0 0 var(--jp-border-width) var(--jp-input-border-color);
}
.lm-CommandPalette.lm-mod-focused .lm-CommandPalette-wrapper {
box-shadow: inset 0 0 0 1px var(--jp-input-active-box-shadow-color),
inset 0 0 0 3px var(--jp-input-active-box-shadow-color);
}
.jp-SearchIconGroup {
color: white;
background-color: var(--jp-brand-color1);
position: absolute;
top: 4px;
right: 4px;
padding: 5px 5px 1px;
}
.jp-SearchIconGroup svg {
height: 20px;
width: 20px;
}
.jp-SearchIconGroup .jp-icon3[fill] {
fill: var(--jp-layout-color0);
}
.lm-CommandPalette-input {
background: transparent;
width: calc(100% - 18px);
float: left;
border: none;
outline: none;
font-size: var(--jp-ui-font-size1);
color: var(--jp-ui-font-color0);
line-height: var(--jp-private-commandpalette-search-height);
}
.lm-CommandPalette-input::-webkit-input-placeholder,
.lm-CommandPalette-input::-moz-placeholder,
.lm-CommandPalette-input:-ms-input-placeholder {
color: var(--jp-ui-font-color2);
font-size: var(--jp-ui-font-size1);
}
/*-----------------------------------------------------------------------------
| Results
|----------------------------------------------------------------------------*/
.lm-CommandPalette-header:first-child {
margin-top: 0;
}
.lm-CommandPalette-header {
border-bottom: solid var(--jp-border-width) var(--jp-border-color2);
color: var(--jp-ui-font-color1);
cursor: pointer;
display: flex;
font-size: var(--jp-ui-font-size0);
font-weight: 600;
letter-spacing: 1px;
margin-top: 8px;
padding: 8px 0 8px 12px;
text-transform: uppercase;
}
.lm-CommandPalette-header.lm-mod-active {
background: var(--jp-layout-color2);
}
.lm-CommandPalette-header > mark {
background-color: transparent;
font-weight: bold;
color: var(--jp-ui-font-color1);
}
.lm-CommandPalette-item {
padding: 4px 12px 4px 4px;
color: var(--jp-ui-font-color1);
font-size: var(--jp-ui-font-size1);
font-weight: 400;
display: flex;
}
.lm-CommandPalette-item.lm-mod-disabled {
color: var(--jp-ui-font-color2);
}
.lm-CommandPalette-item.lm-mod-active {
color: var(--jp-ui-inverse-font-color1);
background: var(--jp-brand-color1);
}
.lm-CommandPalette-item.lm-mod-active .lm-CommandPalette-itemLabel > mark {
color: var(--jp-ui-inverse-font-color0);
}
.lm-CommandPalette-item.lm-mod-active .jp-icon-selectable[fill] {
fill: var(--jp-layout-color0);
}
.lm-CommandPalette-item.lm-mod-active:hover:not(.lm-mod-disabled) {
color: var(--jp-ui-inverse-font-color1);
background: var(--jp-brand-color1);
}
.lm-CommandPalette-item:hover:not(.lm-mod-active):not(.lm-mod-disabled) {
background: var(--jp-layout-color2);
}
.lm-CommandPalette-itemContent {
overflow: hidden;
}
.lm-CommandPalette-itemLabel > mark {
color: var(--jp-ui-font-color0);
background-color: transparent;
font-weight: bold;
}
.lm-CommandPalette-item.lm-mod-disabled mark {
color: var(--jp-ui-font-color2);
}
.lm-CommandPalette-item .lm-CommandPalette-itemIcon {
margin: 0 4px 0 0;
position: relative;
width: 16px;
top: 2px;
flex: 0 0 auto;
}
.lm-CommandPalette-item.lm-mod-disabled .lm-CommandPalette-itemIcon {
opacity: 0.6;
}
.lm-CommandPalette-item .lm-CommandPalette-itemShortcut {
flex: 0 0 auto;
}
.lm-CommandPalette-itemCaption {
display: none;
}
.lm-CommandPalette-content {
background-color: var(--jp-layout-color1);
}
.lm-CommandPalette-content:empty::after {
content: 'No results';
margin: auto;
margin-top: 20px;
width: 100px;
display: block;
font-size: var(--jp-ui-font-size2);
font-family: var(--jp-ui-font-family);
font-weight: lighter;
}
.lm-CommandPalette-emptyMessage {
text-align: center;
margin-top: 24px;
line-height: 1.32;
padding: 0 8px;
color: var(--jp-content-font-color3);
}
/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2017, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-Dialog {
position: absolute;
z-index: 10000;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
top: 0;
left: 0;
margin: 0;
padding: 0;
width: 100%;
height: 100%;
background: var(--jp-dialog-background);
}
.jp-Dialog-content {
display: flex;
flex-direction: column;
margin-left: auto;
margin-right: auto;
background: var(--jp-layout-color1);
padding: 24px 24px 12px;
min-width: 300px;
min-height: 150px;
max-width: 1000px;
max-height: 500px;
box-sizing: border-box;
box-shadow: var(--jp-elevation-z20);
word-wrap: break-word;
border-radius: var(--jp-border-radius);
/* This is needed so that all font sizing of children done in ems is
* relative to this base size */
font-size: var(--jp-ui-font-size1);
color: var(--jp-ui-font-color1);
resize: both;
}
.jp-Dialog-content.jp-Dialog-content-small {
max-width: 500px;
}
.jp-Dialog-button {
overflow: visible;
}
button.jp-Dialog-button:focus {
outline: 1px solid var(--jp-brand-color1);
outline-offset: 4px;
-moz-outline-radius: 0;
}
button.jp-Dialog-button:focus::-moz-focus-inner {
border: 0;
}
button.jp-Dialog-button.jp-mod-styled.jp-mod-accept:focus,
button.jp-Dialog-button.jp-mod-styled.jp-mod-warn:focus,
button.jp-Dialog-button.jp-mod-styled.jp-mod-reject:focus {
outline-offset: 4px;
-moz-outline-radius: 0;
}
button.jp-Dialog-button.jp-mod-styled.jp-mod-accept:focus {
outline: 1px solid var(--jp-accept-color-normal, var(--jp-brand-color1));
}
button.jp-Dialog-button.jp-mod-styled.jp-mod-warn:focus {
outline: 1px solid var(--jp-warn-color-normal, var(--jp-error-color1));
}
button.jp-Dialog-button.jp-mod-styled.jp-mod-reject:focus {
outline: 1px solid var(--jp-reject-color-normal, var(--md-grey-600));
}
button.jp-Dialog-close-button {
padding: 0;
height: 100%;
min-width: unset;
min-height: unset;
}
.jp-Dialog-header {
display: flex;
justify-content: space-between;
flex: 0 0 auto;
padding-bottom: 12px;
font-size: var(--jp-ui-font-size3);
font-weight: 400;
color: var(--jp-ui-font-color1);
}
.jp-Dialog-body {
display: flex;
flex-direction: column;
flex: 1 1 auto;
font-size: var(--jp-ui-font-size1);
background: var(--jp-layout-color1);
color: var(--jp-ui-font-color1);
overflow: auto;
}
.jp-Dialog-footer {
display: flex;
flex-direction: row;
justify-content: flex-end;
align-items: center;
flex: 0 0 auto;
margin-left: -12px;
margin-right: -12px;
padding: 12px;
}
.jp-Dialog-checkbox {
padding-right: 5px;
}
.jp-Dialog-checkbox > input:focus-visible {
outline: 1px solid var(--jp-input-active-border-color);
outline-offset: 1px;
}
.jp-Dialog-spacer {
flex: 1 1 auto;
}
.jp-Dialog-title {
overflow: hidden;
white-space: nowrap;
text-overflow: ellipsis;
}
.jp-Dialog-body > .jp-select-wrapper {
width: 100%;
}
.jp-Dialog-body > button {
padding: 0 16px;
}
.jp-Dialog-body > label {
line-height: 1.4;
color: var(--jp-ui-font-color0);
}
.jp-Dialog-button.jp-mod-styled:not(:last-child) {
margin-right: 12px;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
.jp-Input-Boolean-Dialog {
flex-direction: row-reverse;
align-items: end;
width: 100%;
}
.jp-Input-Boolean-Dialog > label {
flex: 1 1 auto;
}
/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2016, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-MainAreaWidget > :focus {
outline: none;
}
.jp-MainAreaWidget .jp-MainAreaWidget-error {
padding: 6px;
}
.jp-MainAreaWidget .jp-MainAreaWidget-error > pre {
width: auto;
padding: 10px;
background: var(--jp-error-color3);
border: var(--jp-border-width) solid var(--jp-error-color1);
border-radius: var(--jp-border-radius);
color: var(--jp-ui-font-color1);
font-size: var(--jp-ui-font-size1);
white-space: pre-wrap;
word-wrap: break-word;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
/**
* google-material-color v1.2.6
* https://github.com/danlevan/google-material-color
*/
:root {
--md-red-50: #ffebee;
--md-red-100: #ffcdd2;
--md-red-200: #ef9a9a;
--md-red-300: #e57373;
--md-red-400: #ef5350;
--md-red-500: #f44336;
--md-red-600: #e53935;
--md-red-700: #d32f2f;
--md-red-800: #c62828;
--md-red-900: #b71c1c;
--md-red-A100: #ff8a80;
--md-red-A200: #ff5252;
--md-red-A400: #ff1744;
--md-red-A700: #d50000;
--md-pink-50: #fce4ec;
--md-pink-100: #f8bbd0;
--md-pink-200: #f48fb1;
--md-pink-300: #f06292;
--md-pink-400: #ec407a;
--md-pink-500: #e91e63;
--md-pink-600: #d81b60;
--md-pink-700: #c2185b;
--md-pink-800: #ad1457;
--md-pink-900: #880e4f;
--md-pink-A100: #ff80ab;
--md-pink-A200: #ff4081;
--md-pink-A400: #f50057;
--md-pink-A700: #c51162;
--md-purple-50: #f3e5f5;
--md-purple-100: #e1bee7;
--md-purple-200: #ce93d8;
--md-purple-300: #ba68c8;
--md-purple-400: #ab47bc;
--md-purple-500: #9c27b0;
--md-purple-600: #8e24aa;
--md-purple-700: #7b1fa2;
--md-purple-800: #6a1b9a;
--md-purple-900: #4a148c;
--md-purple-A100: #ea80fc;
--md-purple-A200: #e040fb;
--md-purple-A400: #d500f9;
--md-purple-A700: #a0f;
--md-deep-purple-50: #ede7f6;
--md-deep-purple-100: #d1c4e9;
--md-deep-purple-200: #b39ddb;
--md-deep-purple-300: #9575cd;
--md-deep-purple-400: #7e57c2;
--md-deep-purple-500: #673ab7;
--md-deep-purple-600: #5e35b1;
--md-deep-purple-700: #512da8;
--md-deep-purple-800: #4527a0;
--md-deep-purple-900: #311b92;
--md-deep-purple-A100: #b388ff;
--md-deep-purple-A200: #7c4dff;
--md-deep-purple-A400: #651fff;
--md-deep-purple-A700: #6200ea;
--md-indigo-50: #e8eaf6;
--md-indigo-100: #c5cae9;
--md-indigo-200: #9fa8da;
--md-indigo-300: #7986cb;
--md-indigo-400: #5c6bc0;
--md-indigo-500: #3f51b5;
--md-indigo-600: #3949ab;
--md-indigo-700: #303f9f;
--md-indigo-800: #283593;
--md-indigo-900: #1a237e;
--md-indigo-A100: #8c9eff;
--md-indigo-A200: #536dfe;
--md-indigo-A400: #3d5afe;
--md-indigo-A700: #304ffe;
--md-blue-50: #e3f2fd;
--md-blue-100: #bbdefb;
--md-blue-200: #90caf9;
--md-blue-300: #64b5f6;
--md-blue-400: #42a5f5;
--md-blue-500: #2196f3;
--md-blue-600: #1e88e5;
--md-blue-700: #1976d2;
--md-blue-800: #1565c0;
--md-blue-900: #0d47a1;
--md-blue-A100: #82b1ff;
--md-blue-A200: #448aff;
--md-blue-A400: #2979ff;
--md-blue-A700: #2962ff;
--md-light-blue-50: #e1f5fe;
--md-light-blue-100: #b3e5fc;
--md-light-blue-200: #81d4fa;
--md-light-blue-300: #4fc3f7;
--md-light-blue-400: #29b6f6;
--md-light-blue-500: #03a9f4;
--md-light-blue-600: #039be5;
--md-light-blue-700: #0288d1;
--md-light-blue-800: #0277bd;
--md-light-blue-900: #01579b;
--md-light-blue-A100: #80d8ff;
--md-light-blue-A200: #40c4ff;
--md-light-blue-A400: #00b0ff;
--md-light-blue-A700: #0091ea;
--md-cyan-50: #e0f7fa;
--md-cyan-100: #b2ebf2;
--md-cyan-200: #80deea;
--md-cyan-300: #4dd0e1;
--md-cyan-400: #26c6da;
--md-cyan-500: #00bcd4;
--md-cyan-600: #00acc1;
--md-cyan-700: #0097a7;
--md-cyan-800: #00838f;
--md-cyan-900: #006064;
--md-cyan-A100: #84ffff;
--md-cyan-A200: #18ffff;
--md-cyan-A400: #00e5ff;
--md-cyan-A700: #00b8d4;
--md-teal-50: #e0f2f1;
--md-teal-100: #b2dfdb;
--md-teal-200: #80cbc4;
--md-teal-300: #4db6ac;
--md-teal-400: #26a69a;
--md-teal-500: #009688;
--md-teal-600: #00897b;
--md-teal-700: #00796b;
--md-teal-800: #00695c;
--md-teal-900: #004d40;
--md-teal-A100: #a7ffeb;
--md-teal-A200: #64ffda;
--md-teal-A400: #1de9b6;
--md-teal-A700: #00bfa5;
--md-green-50: #e8f5e9;
--md-green-100: #c8e6c9;
--md-green-200: #a5d6a7;
--md-green-300: #81c784;
--md-green-400: #66bb6a;
--md-green-500: #4caf50;
--md-green-600: #43a047;
--md-green-700: #388e3c;
--md-green-800: #2e7d32;
--md-green-900: #1b5e20;
--md-green-A100: #b9f6ca;
--md-green-A200: #69f0ae;
--md-green-A400: #00e676;
--md-green-A700: #00c853;
--md-light-green-50: #f1f8e9;
--md-light-green-100: #dcedc8;
--md-light-green-200: #c5e1a5;
--md-light-green-300: #aed581;
--md-light-green-400: #9ccc65;
--md-light-green-500: #8bc34a;
--md-light-green-600: #7cb342;
--md-light-green-700: #689f38;
--md-light-green-800: #558b2f;
--md-light-green-900: #33691e;
--md-light-green-A100: #ccff90;
--md-light-green-A200: #b2ff59;
--md-light-green-A400: #76ff03;
--md-light-green-A700: #64dd17;
--md-lime-50: #f9fbe7;
--md-lime-100: #f0f4c3;
--md-lime-200: #e6ee9c;
--md-lime-300: #dce775;
--md-lime-400: #d4e157;
--md-lime-500: #cddc39;
--md-lime-600: #c0ca33;
--md-lime-700: #afb42b;
--md-lime-800: #9e9d24;
--md-lime-900: #827717;
--md-lime-A100: #f4ff81;
--md-lime-A200: #eeff41;
--md-lime-A400: #c6ff00;
--md-lime-A700: #aeea00;
--md-yellow-50: #fffde7;
--md-yellow-100: #fff9c4;
--md-yellow-200: #fff59d;
--md-yellow-300: #fff176;
--md-yellow-400: #ffee58;
--md-yellow-500: #ffeb3b;
--md-yellow-600: #fdd835;
--md-yellow-700: #fbc02d;
--md-yellow-800: #f9a825;
--md-yellow-900: #f57f17;
--md-yellow-A100: #ffff8d;
--md-yellow-A200: #ff0;
--md-yellow-A400: #ffea00;
--md-yellow-A700: #ffd600;
--md-amber-50: #fff8e1;
--md-amber-100: #ffecb3;
--md-amber-200: #ffe082;
--md-amber-300: #ffd54f;
--md-amber-400: #ffca28;
--md-amber-500: #ffc107;
--md-amber-600: #ffb300;
--md-amber-700: #ffa000;
--md-amber-800: #ff8f00;
--md-amber-900: #ff6f00;
--md-amber-A100: #ffe57f;
--md-amber-A200: #ffd740;
--md-amber-A400: #ffc400;
--md-amber-A700: #ffab00;
--md-orange-50: #fff3e0;
--md-orange-100: #ffe0b2;
--md-orange-200: #ffcc80;
--md-orange-300: #ffb74d;
--md-orange-400: #ffa726;
--md-orange-500: #ff9800;
--md-orange-600: #fb8c00;
--md-orange-700: #f57c00;
--md-orange-800: #ef6c00;
--md-orange-900: #e65100;
--md-orange-A100: #ffd180;
--md-orange-A200: #ffab40;
--md-orange-A400: #ff9100;
--md-orange-A700: #ff6d00;
--md-deep-orange-50: #fbe9e7;
--md-deep-orange-100: #ffccbc;
--md-deep-orange-200: #ffab91;
--md-deep-orange-300: #ff8a65;
--md-deep-orange-400: #ff7043;
--md-deep-orange-500: #ff5722;
--md-deep-orange-600: #f4511e;
--md-deep-orange-700: #e64a19;
--md-deep-orange-800: #d84315;
--md-deep-orange-900: #bf360c;
--md-deep-orange-A100: #ff9e80;
--md-deep-orange-A200: #ff6e40;
--md-deep-orange-A400: #ff3d00;
--md-deep-orange-A700: #dd2c00;
--md-brown-50: #efebe9;
--md-brown-100: #d7ccc8;
--md-brown-200: #bcaaa4;
--md-brown-300: #a1887f;
--md-brown-400: #8d6e63;
--md-brown-500: #795548;
--md-brown-600: #6d4c41;
--md-brown-700: #5d4037;
--md-brown-800: #4e342e;
--md-brown-900: #3e2723;
--md-grey-50: #fafafa;
--md-grey-100: #f5f5f5;
--md-grey-200: #eee;
--md-grey-300: #e0e0e0;
--md-grey-400: #bdbdbd;
--md-grey-500: #9e9e9e;
--md-grey-600: #757575;
--md-grey-700: #616161;
--md-grey-800: #424242;
--md-grey-900: #212121;
--md-blue-grey-50: #eceff1;
--md-blue-grey-100: #cfd8dc;
--md-blue-grey-200: #b0bec5;
--md-blue-grey-300: #90a4ae;
--md-blue-grey-400: #78909c;
--md-blue-grey-500: #607d8b;
--md-blue-grey-600: #546e7a;
--md-blue-grey-700: #455a64;
--md-blue-grey-800: #37474f;
--md-blue-grey-900: #263238;
}
/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2017, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| RenderedText
|----------------------------------------------------------------------------*/
:root {
/* This is the padding value to fill the gaps between lines containing spans with background color. */
--jp-private-code-span-padding: calc(
(var(--jp-code-line-height) - 1) * var(--jp-code-font-size) / 2
);
}
.jp-RenderedText {
text-align: left;
padding-left: var(--jp-code-padding);
line-height: var(--jp-code-line-height);
font-family: var(--jp-code-font-family);
}
.jp-RenderedText pre,
.jp-RenderedJavaScript pre,
.jp-RenderedHTMLCommon pre {
color: var(--jp-content-font-color1);
font-size: var(--jp-code-font-size);
border: none;
margin: 0;
padding: 0;
}
.jp-RenderedText pre a:link {
text-decoration: none;
color: var(--jp-content-link-color);
}
.jp-RenderedText pre a:hover {
text-decoration: underline;
color: var(--jp-content-link-color);
}
.jp-RenderedText pre a:visited {
text-decoration: none;
color: var(--jp-content-link-color);
}
/* console foregrounds and backgrounds */
.jp-RenderedText pre .ansi-black-fg {
color: #3e424d;
}
.jp-RenderedText pre .ansi-red-fg {
color: #e75c58;
}
.jp-RenderedText pre .ansi-green-fg {
color: #00a250;
}
.jp-RenderedText pre .ansi-yellow-fg {
color: #ddb62b;
}
.jp-RenderedText pre .ansi-blue-fg {
color: #208ffb;
}
.jp-RenderedText pre .ansi-magenta-fg {
color: #d160c4;
}
.jp-RenderedText pre .ansi-cyan-fg {
color: #60c6c8;
}
.jp-RenderedText pre .ansi-white-fg {
color: #c5c1b4;
}
.jp-RenderedText pre .ansi-black-bg {
background-color: #3e424d;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-red-bg {
background-color: #e75c58;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-green-bg {
background-color: #00a250;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-yellow-bg {
background-color: #ddb62b;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-blue-bg {
background-color: #208ffb;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-magenta-bg {
background-color: #d160c4;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-cyan-bg {
background-color: #60c6c8;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-white-bg {
background-color: #c5c1b4;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-black-intense-fg {
color: #282c36;
}
.jp-RenderedText pre .ansi-red-intense-fg {
color: #b22b31;
}
.jp-RenderedText pre .ansi-green-intense-fg {
color: #007427;
}
.jp-RenderedText pre .ansi-yellow-intense-fg {
color: #b27d12;
}
.jp-RenderedText pre .ansi-blue-intense-fg {
color: #0065ca;
}
.jp-RenderedText pre .ansi-magenta-intense-fg {
color: #a03196;
}
.jp-RenderedText pre .ansi-cyan-intense-fg {
color: #258f8f;
}
.jp-RenderedText pre .ansi-white-intense-fg {
color: #a1a6b2;
}
.jp-RenderedText pre .ansi-black-intense-bg {
background-color: #282c36;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-red-intense-bg {
background-color: #b22b31;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-green-intense-bg {
background-color: #007427;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-yellow-intense-bg {
background-color: #b27d12;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-blue-intense-bg {
background-color: #0065ca;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-magenta-intense-bg {
background-color: #a03196;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-cyan-intense-bg {
background-color: #258f8f;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-white-intense-bg {
background-color: #a1a6b2;
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-default-inverse-fg {
color: var(--jp-ui-inverse-font-color0);
}
.jp-RenderedText pre .ansi-default-inverse-bg {
background-color: var(--jp-inverse-layout-color0);
padding: var(--jp-private-code-span-padding) 0;
}
.jp-RenderedText pre .ansi-bold {
font-weight: bold;
}
.jp-RenderedText pre .ansi-underline {
text-decoration: underline;
}
.jp-RenderedText[data-mime-type='application/vnd.jupyter.stderr'] {
background: var(--jp-rendermime-error-background);
padding-top: var(--jp-code-padding);
}
/*-----------------------------------------------------------------------------
| RenderedLatex
|----------------------------------------------------------------------------*/
.jp-RenderedLatex {
color: var(--jp-content-font-color1);
font-size: var(--jp-content-font-size1);
line-height: var(--jp-content-line-height);
}
/* Left-justify outputs.*/
.jp-OutputArea-output.jp-RenderedLatex {
padding: var(--jp-code-padding);
text-align: left;
}
/*-----------------------------------------------------------------------------
| RenderedHTML
|----------------------------------------------------------------------------*/
.jp-RenderedHTMLCommon {
color: var(--jp-content-font-color1);
font-family: var(--jp-content-font-family);
font-size: var(--jp-content-font-size1);
line-height: var(--jp-content-line-height);
/* Give a bit more R padding on Markdown text to keep line lengths reasonable */
padding-right: 20px;
}
.jp-RenderedHTMLCommon em {
font-style: italic;
}
.jp-RenderedHTMLCommon strong {
font-weight: bold;
}
.jp-RenderedHTMLCommon u {
text-decoration: underline;
}
.jp-RenderedHTMLCommon a:link {
text-decoration: none;
color: var(--jp-content-link-color);
}
.jp-RenderedHTMLCommon a:hover {
text-decoration: underline;
color: var(--jp-content-link-color);
}
.jp-RenderedHTMLCommon a:visited {
text-decoration: none;
color: var(--jp-content-link-color);
}
/* Headings */
.jp-RenderedHTMLCommon h1,
.jp-RenderedHTMLCommon h2,
.jp-RenderedHTMLCommon h3,
.jp-RenderedHTMLCommon h4,
.jp-RenderedHTMLCommon h5,
.jp-RenderedHTMLCommon h6 {
line-height: var(--jp-content-heading-line-height);
font-weight: var(--jp-content-heading-font-weight);
font-style: normal;
margin: var(--jp-content-heading-margin-top) 0
var(--jp-content-heading-margin-bottom) 0;
}
.jp-RenderedHTMLCommon h1:first-child,
.jp-RenderedHTMLCommon h2:first-child,
.jp-RenderedHTMLCommon h3:first-child,
.jp-RenderedHTMLCommon h4:first-child,
.jp-RenderedHTMLCommon h5:first-child,
.jp-RenderedHTMLCommon h6:first-child {
margin-top: calc(0.5 * var(--jp-content-heading-margin-top));
}
.jp-RenderedHTMLCommon h1:last-child,
.jp-RenderedHTMLCommon h2:last-child,
.jp-RenderedHTMLCommon h3:last-child,
.jp-RenderedHTMLCommon h4:last-child,
.jp-RenderedHTMLCommon h5:last-child,
.jp-RenderedHTMLCommon h6:last-child {
margin-bottom: calc(0.5 * var(--jp-content-heading-margin-bottom));
}
.jp-RenderedHTMLCommon h1 {
font-size: var(--jp-content-font-size5);
}
.jp-RenderedHTMLCommon h2 {
font-size: var(--jp-content-font-size4);
}
.jp-RenderedHTMLCommon h3 {
font-size: var(--jp-content-font-size3);
}
.jp-RenderedHTMLCommon h4 {
font-size: var(--jp-content-font-size2);
}
.jp-RenderedHTMLCommon h5 {
font-size: var(--jp-content-font-size1);
}
.jp-RenderedHTMLCommon h6 {
font-size: var(--jp-content-font-size0);
}
/* Lists */
/* stylelint-disable selector-max-type, selector-max-compound-selectors */
.jp-RenderedHTMLCommon ul:not(.list-inline),
.jp-RenderedHTMLCommon ol:not(.list-inline) {
padding-left: 2em;
}
.jp-RenderedHTMLCommon ul {
list-style: disc;
}
.jp-RenderedHTMLCommon ul ul {
list-style: square;
}
.jp-RenderedHTMLCommon ul ul ul {
list-style: circle;
}
.jp-RenderedHTMLCommon ol {
list-style: decimal;
}
.jp-RenderedHTMLCommon ol ol {
list-style: upper-alpha;
}
.jp-RenderedHTMLCommon ol ol ol {
list-style: lower-alpha;
}
.jp-RenderedHTMLCommon ol ol ol ol {
list-style: lower-roman;
}
.jp-RenderedHTMLCommon ol ol ol ol ol {
list-style: decimal;
}
.jp-RenderedHTMLCommon ol,
.jp-RenderedHTMLCommon ul {
margin-bottom: 1em;
}
.jp-RenderedHTMLCommon ul ul,
.jp-RenderedHTMLCommon ul ol,
.jp-RenderedHTMLCommon ol ul,
.jp-RenderedHTMLCommon ol ol {
margin-bottom: 0;
}
/* stylelint-enable selector-max-type, selector-max-compound-selectors */
.jp-RenderedHTMLCommon hr {
color: var(--jp-border-color2);
background-color: var(--jp-border-color1);
margin-top: 1em;
margin-bottom: 1em;
}
.jp-RenderedHTMLCommon > pre {
margin: 1.5em 2em;
}
.jp-RenderedHTMLCommon pre,
.jp-RenderedHTMLCommon code {
border: 0;
background-color: var(--jp-layout-color0);
color: var(--jp-content-font-color1);
font-family: var(--jp-code-font-family);
font-size: inherit;
line-height: var(--jp-code-line-height);
padding: 0;
white-space: pre-wrap;
}
.jp-RenderedHTMLCommon :not(pre) > code {
background-color: var(--jp-layout-color2);
padding: 1px 5px;
}
/* Tables */
.jp-RenderedHTMLCommon table {
border-collapse: collapse;
border-spacing: 0;
border: none;
color: var(--jp-ui-font-color1);
font-size: var(--jp-ui-font-size1);
table-layout: fixed;
margin-left: auto;
margin-bottom: 1em;
margin-right: auto;
}
.jp-RenderedHTMLCommon thead {
border-bottom: var(--jp-border-width) solid var(--jp-border-color1);
vertical-align: bottom;
}
.jp-RenderedHTMLCommon td,
.jp-RenderedHTMLCommon th,
.jp-RenderedHTMLCommon tr {
vertical-align: middle;
padding: 0.5em;
line-height: normal;
white-space: normal;
max-width: none;
border: none;
}
.jp-RenderedMarkdown.jp-RenderedHTMLCommon td,
.jp-RenderedMarkdown.jp-RenderedHTMLCommon th {
max-width: none;
}
:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon td,
:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon th,
:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon tr {
text-align: right;
}
.jp-RenderedHTMLCommon th {
font-weight: bold;
}
.jp-RenderedHTMLCommon tbody tr:nth-child(odd) {
background: var(--jp-layout-color0);
}
.jp-RenderedHTMLCommon tbody tr:nth-child(even) {
background: var(--jp-rendermime-table-row-background);
}
.jp-RenderedHTMLCommon tbody tr:hover {
background: var(--jp-rendermime-table-row-hover-background);
}
.jp-RenderedHTMLCommon p {
text-align: left;
margin: 0;
margin-bottom: 1em;
}
.jp-RenderedHTMLCommon img {
-moz-force-broken-image-icon: 1;
}
/* Restrict to direct children as other images could be nested in other content. */
.jp-RenderedHTMLCommon > img {
display: block;
margin-left: 0;
margin-right: 0;
margin-bottom: 1em;
}
/* Change color behind transparent images if they need it... */
[data-jp-theme-light='false'] .jp-RenderedImage img.jp-needs-light-background {
background-color: var(--jp-inverse-layout-color1);
}
[data-jp-theme-light='true'] .jp-RenderedImage img.jp-needs-dark-background {
background-color: var(--jp-inverse-layout-color1);
}
.jp-RenderedHTMLCommon img,
.jp-RenderedImage img,
.jp-RenderedHTMLCommon svg,
.jp-RenderedSVG svg {
max-width: 100%;
height: auto;
}
.jp-RenderedHTMLCommon img.jp-mod-unconfined,
.jp-RenderedImage img.jp-mod-unconfined,
.jp-RenderedHTMLCommon svg.jp-mod-unconfined,
.jp-RenderedSVG svg.jp-mod-unconfined {
max-width: none;
}
.jp-RenderedHTMLCommon .alert {
padding: var(--jp-notebook-padding);
border: var(--jp-border-width) solid transparent;
border-radius: var(--jp-border-radius);
margin-bottom: 1em;
}
.jp-RenderedHTMLCommon .alert-info {
color: var(--jp-info-color0);
background-color: var(--jp-info-color3);
border-color: var(--jp-info-color2);
}
.jp-RenderedHTMLCommon .alert-info hr {
border-color: var(--jp-info-color3);
}
.jp-RenderedHTMLCommon .alert-info > p:last-child,
.jp-RenderedHTMLCommon .alert-info > ul:last-child {
margin-bottom: 0;
}
.jp-RenderedHTMLCommon .alert-warning {
color: var(--jp-warn-color0);
background-color: var(--jp-warn-color3);
border-color: var(--jp-warn-color2);
}
.jp-RenderedHTMLCommon .alert-warning hr {
border-color: var(--jp-warn-color3);
}
.jp-RenderedHTMLCommon .alert-warning > p:last-child,
.jp-RenderedHTMLCommon .alert-warning > ul:last-child {
margin-bottom: 0;
}
.jp-RenderedHTMLCommon .alert-success {
color: var(--jp-success-color0);
background-color: var(--jp-success-color3);
border-color: var(--jp-success-color2);
}
.jp-RenderedHTMLCommon .alert-success hr {
border-color: var(--jp-success-color3);
}
.jp-RenderedHTMLCommon .alert-success > p:last-child,
.jp-RenderedHTMLCommon .alert-success > ul:last-child {
margin-bottom: 0;
}
.jp-RenderedHTMLCommon .alert-danger {
color: var(--jp-error-color0);
background-color: var(--jp-error-color3);
border-color: var(--jp-error-color2);
}
.jp-RenderedHTMLCommon .alert-danger hr {
border-color: var(--jp-error-color3);
}
.jp-RenderedHTMLCommon .alert-danger > p:last-child,
.jp-RenderedHTMLCommon .alert-danger > ul:last-child {
margin-bottom: 0;
}
.jp-RenderedHTMLCommon blockquote {
margin: 1em 2em;
padding: 0 1em;
border-left: 5px solid var(--jp-border-color2);
}
a.jp-InternalAnchorLink {
visibility: hidden;
margin-left: 8px;
color: var(--md-blue-800);
}
h1:hover .jp-InternalAnchorLink,
h2:hover .jp-InternalAnchorLink,
h3:hover .jp-InternalAnchorLink,
h4:hover .jp-InternalAnchorLink,
h5:hover .jp-InternalAnchorLink,
h6:hover .jp-InternalAnchorLink {
visibility: visible;
}
.jp-RenderedHTMLCommon kbd {
background-color: var(--jp-rendermime-table-row-background);
border: 1px solid var(--jp-border-color0);
border-bottom-color: var(--jp-border-color2);
border-radius: 3px;
box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.25);
display: inline-block;
font-size: var(--jp-ui-font-size0);
line-height: 1em;
padding: 0.2em 0.5em;
}
/* Most direct children of .jp-RenderedHTMLCommon have a margin-bottom of 1.0.
* At the bottom of cells this is a bit too much as there is also spacing
* between cells. Going all the way to 0 gets too tight between markdown and
* code cells.
*/
.jp-RenderedHTMLCommon > *:last-child {
margin-bottom: 0.5em;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
.lm-cursor-backdrop {
position: fixed;
width: 200px;
height: 200px;
margin-top: -100px;
margin-left: -100px;
will-change: transform;
z-index: 100;
}
.lm-mod-drag-image {
will-change: transform;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
.jp-lineFormSearch {
padding: 4px 12px;
background-color: var(--jp-layout-color2);
box-shadow: var(--jp-toolbar-box-shadow);
z-index: 2;
font-size: var(--jp-ui-font-size1);
}
.jp-lineFormCaption {
font-size: var(--jp-ui-font-size0);
line-height: var(--jp-ui-font-size1);
margin-top: 4px;
color: var(--jp-ui-font-color0);
}
.jp-baseLineForm {
border: none;
border-radius: 0;
position: absolute;
background-size: 16px;
background-repeat: no-repeat;
background-position: center;
outline: none;
}
.jp-lineFormButtonContainer {
top: 4px;
right: 8px;
height: 24px;
padding: 0 12px;
width: 12px;
}
.jp-lineFormButtonIcon {
top: 0;
right: 0;
background-color: var(--jp-brand-color1);
height: 100%;
width: 100%;
box-sizing: border-box;
padding: 4px 6px;
}
.jp-lineFormButton {
top: 0;
right: 0;
background-color: transparent;
height: 100%;
width: 100%;
box-sizing: border-box;
}
.jp-lineFormWrapper {
overflow: hidden;
padding: 0 8px;
border: 1px solid var(--jp-border-color0);
background-color: var(--jp-input-active-background);
height: 22px;
}
.jp-lineFormWrapperFocusWithin {
border: var(--jp-border-width) solid var(--md-blue-500);
box-shadow: inset 0 0 4px var(--md-blue-300);
}
.jp-lineFormInput {
background: transparent;
width: 200px;
height: 100%;
border: none;
outline: none;
color: var(--jp-ui-font-color0);
line-height: 28px;
}
/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2016, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-JSONEditor {
display: flex;
flex-direction: column;
width: 100%;
}
.jp-JSONEditor-host {
flex: 1 1 auto;
border: var(--jp-border-width) solid var(--jp-input-border-color);
border-radius: 0;
background: var(--jp-layout-color0);
min-height: 50px;
padding: 1px;
}
.jp-JSONEditor.jp-mod-error .jp-JSONEditor-host {
border-color: red;
outline-color: red;
}
.jp-JSONEditor-header {
display: flex;
flex: 1 0 auto;
padding: 0 0 0 12px;
}
.jp-JSONEditor-header label {
flex: 0 0 auto;
}
.jp-JSONEditor-commitButton {
height: 16px;
width: 16px;
background-size: 18px;
background-repeat: no-repeat;
background-position: center;
}
.jp-JSONEditor-host.jp-mod-focused {
background-color: var(--jp-input-active-background);
border: 1px solid var(--jp-input-active-border-color);
box-shadow: var(--jp-input-box-shadow);
}
.jp-Editor.jp-mod-dropTarget {
border: var(--jp-border-width) solid var(--jp-input-active-border-color);
box-shadow: var(--jp-input-box-shadow);
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-DocumentSearch-input {
border: none;
outline: none;
color: var(--jp-ui-font-color0);
font-size: var(--jp-ui-font-size1);
background-color: var(--jp-layout-color0);
font-family: var(--jp-ui-font-family);
padding: 2px 1px;
resize: none;
}
.jp-DocumentSearch-overlay {
position: absolute;
background-color: var(--jp-toolbar-background);
border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color);
border-left: var(--jp-border-width) solid var(--jp-toolbar-border-color);
top: 0;
right: 0;
z-index: 7;
min-width: 405px;
padding: 2px;
font-size: var(--jp-ui-font-size1);
--jp-private-document-search-button-height: 20px;
}
.jp-DocumentSearch-overlay button {
background-color: var(--jp-toolbar-background);
outline: 0;
}
.jp-DocumentSearch-overlay button:hover {
background-color: var(--jp-layout-color2);
}
.jp-DocumentSearch-overlay button:active {
background-color: var(--jp-layout-color3);
}
.jp-DocumentSearch-overlay-row {
display: flex;
align-items: center;
margin-bottom: 2px;
}
.jp-DocumentSearch-button-content {
display: inline-block;
cursor: pointer;
box-sizing: border-box;
width: 100%;
height: 100%;
}
.jp-DocumentSearch-button-content svg {
width: 100%;
height: 100%;
}
.jp-DocumentSearch-input-wrapper {
border: var(--jp-border-width) solid var(--jp-border-color0);
display: flex;
background-color: var(--jp-layout-color0);
margin: 2px;
}
.jp-DocumentSearch-input-wrapper:focus-within {
border-color: var(--jp-cell-editor-active-border-color);
}
.jp-DocumentSearch-toggle-wrapper,
.jp-DocumentSearch-button-wrapper {
all: initial;
overflow: hidden;
display: inline-block;
border: none;
box-sizing: border-box;
}
.jp-DocumentSearch-toggle-wrapper {
width: 14px;
height: 14px;
}
.jp-DocumentSearch-button-wrapper {
width: var(--jp-private-document-search-button-height);
height: var(--jp-private-document-search-button-height);
}
.jp-DocumentSearch-toggle-wrapper:focus,
.jp-DocumentSearch-button-wrapper:focus {
outline: var(--jp-border-width) solid
var(--jp-cell-editor-active-border-color);
outline-offset: -1px;
}
.jp-DocumentSearch-toggle-wrapper,
.jp-DocumentSearch-button-wrapper,
.jp-DocumentSearch-button-content:focus {
outline: none;
}
.jp-DocumentSearch-toggle-placeholder {
width: 5px;
}
.jp-DocumentSearch-input-button::before {
display: block;
padding-top: 100%;
}
.jp-DocumentSearch-input-button-off {
opacity: var(--jp-search-toggle-off-opacity);
}
.jp-DocumentSearch-input-button-off:hover {
opacity: var(--jp-search-toggle-hover-opacity);
}
.jp-DocumentSearch-input-button-on {
opacity: var(--jp-search-toggle-on-opacity);
}
.jp-DocumentSearch-index-counter {
padding-left: 10px;
padding-right: 10px;
user-select: none;
min-width: 35px;
display: inline-block;
}
.jp-DocumentSearch-up-down-wrapper {
display: inline-block;
padding-right: 2px;
margin-left: auto;
white-space: nowrap;
}
.jp-DocumentSearch-spacer {
margin-left: auto;
}
.jp-DocumentSearch-up-down-wrapper button {
outline: 0;
border: none;
width: var(--jp-private-document-search-button-height);
height: var(--jp-private-document-search-button-height);
vertical-align: middle;
margin: 1px 5px 2px;
}
.jp-DocumentSearch-up-down-button:hover {
background-color: var(--jp-layout-color2);
}
.jp-DocumentSearch-up-down-button:active {
background-color: var(--jp-layout-color3);
}
.jp-DocumentSearch-filter-button {
border-radius: var(--jp-border-radius);
}
.jp-DocumentSearch-filter-button:hover {
background-color: var(--jp-layout-color2);
}
.jp-DocumentSearch-filter-button-enabled {
background-color: var(--jp-layout-color2);
}
.jp-DocumentSearch-filter-button-enabled:hover {
background-color: var(--jp-layout-color3);
}
.jp-DocumentSearch-search-options {
padding: 0 8px;
margin-left: 3px;
width: 100%;
display: grid;
justify-content: start;
grid-template-columns: 1fr 1fr;
align-items: center;
justify-items: stretch;
}
.jp-DocumentSearch-search-filter-disabled {
color: var(--jp-ui-font-color2);
}
.jp-DocumentSearch-search-filter {
display: flex;
align-items: center;
user-select: none;
}
.jp-DocumentSearch-regex-error {
color: var(--jp-error-color0);
}
.jp-DocumentSearch-replace-button-wrapper {
overflow: hidden;
display: inline-block;
box-sizing: border-box;
border: var(--jp-border-width) solid var(--jp-border-color0);
margin: auto 2px;
padding: 1px 4px;
height: calc(var(--jp-private-document-search-button-height) + 2px);
}
.jp-DocumentSearch-replace-button-wrapper:focus {
border: var(--jp-border-width) solid var(--jp-cell-editor-active-border-color);
}
.jp-DocumentSearch-replace-button {
display: inline-block;
text-align: center;
cursor: pointer;
box-sizing: border-box;
color: var(--jp-ui-font-color1);
/* height - 2 * (padding of wrapper) */
line-height: calc(var(--jp-private-document-search-button-height) - 2px);
width: 100%;
height: 100%;
}
.jp-DocumentSearch-replace-button:focus {
outline: none;
}
.jp-DocumentSearch-replace-wrapper-class {
margin-left: 14px;
display: flex;
}
.jp-DocumentSearch-replace-toggle {
border: none;
background-color: var(--jp-toolbar-background);
border-radius: var(--jp-border-radius);
}
.jp-DocumentSearch-replace-toggle:hover {
background-color: var(--jp-layout-color2);
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.cm-editor {
line-height: var(--jp-code-line-height);
font-size: var(--jp-code-font-size);
font-family: var(--jp-code-font-family);
border: 0;
border-radius: 0;
height: auto;
/* Changed to auto to autogrow */
}
.cm-editor pre {
padding: 0 var(--jp-code-padding);
}
.jp-CodeMirrorEditor[data-type='inline'] .cm-dialog {
background-color: var(--jp-layout-color0);
color: var(--jp-content-font-color1);
}
.jp-CodeMirrorEditor {
cursor: text;
}
/* When zoomed out 67% and 33% on a screen of 1440 width x 900 height */
@media screen and (min-width: 2138px) and (max-width: 4319px) {
.jp-CodeMirrorEditor[data-type='inline'] .cm-cursor {
border-left: var(--jp-code-cursor-width1) solid
var(--jp-editor-cursor-color);
}
}
/* When zoomed out less than 33% */
@media screen and (min-width: 4320px) {
.jp-CodeMirrorEditor[data-type='inline'] .cm-cursor {
border-left: var(--jp-code-cursor-width2) solid
var(--jp-editor-cursor-color);
}
}
.cm-editor.jp-mod-readOnly .cm-cursor {
display: none;
}
.jp-CollaboratorCursor {
border-left: 5px solid transparent;
border-right: 5px solid transparent;
border-top: none;
border-bottom: 3px solid;
background-clip: content-box;
margin-left: -5px;
margin-right: -5px;
}
.cm-searching,
.cm-searching span {
/* `.cm-searching span`: we need to override syntax highlighting */
background-color: var(--jp-search-unselected-match-background-color);
color: var(--jp-search-unselected-match-color);
}
.cm-searching::selection,
.cm-searching span::selection {
background-color: var(--jp-search-unselected-match-background-color);
color: var(--jp-search-unselected-match-color);
}
.jp-current-match > .cm-searching,
.jp-current-match > .cm-searching span,
.cm-searching > .jp-current-match,
.cm-searching > .jp-current-match span {
background-color: var(--jp-search-selected-match-background-color);
color: var(--jp-search-selected-match-color);
}
.jp-current-match > .cm-searching::selection,
.cm-searching > .jp-current-match::selection,
.jp-current-match > .cm-searching span::selection {
background-color: var(--jp-search-selected-match-background-color);
color: var(--jp-search-selected-match-color);
}
.cm-trailingspace {
background-image: url();
background-position: center left;
background-repeat: repeat-x;
}
.jp-CollaboratorCursor-hover {
position: absolute;
z-index: 1;
transform: translateX(-50%);
color: white;
border-radius: 3px;
padding-left: 4px;
padding-right: 4px;
padding-top: 1px;
padding-bottom: 1px;
text-align: center;
font-size: var(--jp-ui-font-size1);
white-space: nowrap;
}
.jp-CodeMirror-ruler {
border-left: 1px dashed var(--jp-border-color2);
}
/* Styles for shared cursors (remote cursor locations and selected ranges) */
.jp-CodeMirrorEditor .cm-ySelectionCaret {
position: relative;
border-left: 1px solid black;
margin-left: -1px;
margin-right: -1px;
box-sizing: border-box;
}
.jp-CodeMirrorEditor .cm-ySelectionCaret > .cm-ySelectionInfo {
white-space: nowrap;
position: absolute;
top: -1.15em;
padding-bottom: 0.05em;
left: -1px;
font-size: 0.95em;
font-family: var(--jp-ui-font-family);
font-weight: bold;
line-height: normal;
user-select: none;
color: white;
padding-left: 2px;
padding-right: 2px;
z-index: 101;
transition: opacity 0.3s ease-in-out;
}
.jp-CodeMirrorEditor .cm-ySelectionInfo {
transition-delay: 0.7s;
opacity: 0;
}
.jp-CodeMirrorEditor .cm-ySelectionCaret:hover > .cm-ySelectionInfo {
opacity: 1;
transition-delay: 0s;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-MimeDocument {
outline: none;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Variables
|----------------------------------------------------------------------------*/
:root {
--jp-private-filebrowser-button-height: 28px;
--jp-private-filebrowser-button-width: 48px;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-FileBrowser .jp-SidePanel-content {
display: flex;
flex-direction: column;
}
.jp-FileBrowser-toolbar.jp-Toolbar {
flex-wrap: wrap;
row-gap: 12px;
border-bottom: none;
height: auto;
margin: 8px 12px 0;
box-shadow: none;
padding: 0;
justify-content: flex-start;
}
.jp-FileBrowser-Panel {
flex: 1 1 auto;
display: flex;
flex-direction: column;
}
.jp-BreadCrumbs {
flex: 0 0 auto;
margin: 8px 12px;
}
.jp-BreadCrumbs-item {
margin: 0 2px;
padding: 0 2px;
border-radius: var(--jp-border-radius);
cursor: pointer;
}
.jp-BreadCrumbs-item:hover {
background-color: var(--jp-layout-color2);
}
.jp-BreadCrumbs-item:first-child {
margin-left: 0;
}
.jp-BreadCrumbs-item.jp-mod-dropTarget {
background-color: var(--jp-brand-color2);
opacity: 0.7;
}
/*-----------------------------------------------------------------------------
| Buttons
|----------------------------------------------------------------------------*/
.jp-FileBrowser-toolbar > .jp-Toolbar-item {
flex: 0 0 auto;
padding-left: 0;
padding-right: 2px;
align-items: center;
height: unset;
}
.jp-FileBrowser-toolbar > .jp-Toolbar-item .jp-ToolbarButtonComponent {
width: 40px;
}
/*-----------------------------------------------------------------------------
| Other styles
|----------------------------------------------------------------------------*/
.jp-FileDialog.jp-mod-conflict input {
color: var(--jp-error-color1);
}
.jp-FileDialog .jp-new-name-title {
margin-top: 12px;
}
.jp-LastModified-hidden {
display: none;
}
.jp-FileSize-hidden {
display: none;
}
.jp-FileBrowser .lm-AccordionPanel > h3:first-child {
display: none;
}
/*-----------------------------------------------------------------------------
| DirListing
|----------------------------------------------------------------------------*/
.jp-DirListing {
flex: 1 1 auto;
display: flex;
flex-direction: column;
outline: 0;
}
.jp-DirListing-header {
flex: 0 0 auto;
display: flex;
flex-direction: row;
align-items: center;
overflow: hidden;
border-top: var(--jp-border-width) solid var(--jp-border-color2);
border-bottom: var(--jp-border-width) solid var(--jp-border-color1);
box-shadow: var(--jp-toolbar-box-shadow);
z-index: 2;
}
.jp-DirListing-headerItem {
padding: 4px 12px 2px;
font-weight: 500;
}
.jp-DirListing-headerItem:hover {
background: var(--jp-layout-color2);
}
.jp-DirListing-headerItem.jp-id-name {
flex: 1 0 84px;
}
.jp-DirListing-headerItem.jp-id-modified {
flex: 0 0 112px;
border-left: var(--jp-border-width) solid var(--jp-border-color2);
text-align: right;
}
.jp-DirListing-headerItem.jp-id-filesize {
flex: 0 0 75px;
border-left: var(--jp-border-width) solid var(--jp-border-color2);
text-align: right;
}
.jp-id-narrow {
display: none;
flex: 0 0 5px;
padding: 4px;
border-left: var(--jp-border-width) solid var(--jp-border-color2);
text-align: right;
color: var(--jp-border-color2);
}
.jp-DirListing-narrow .jp-id-narrow {
display: block;
}
.jp-DirListing-narrow .jp-id-modified,
.jp-DirListing-narrow .jp-DirListing-itemModified {
display: none;
}
.jp-DirListing-headerItem.jp-mod-selected {
font-weight: 600;
}
/* increase specificity to override bundled default */
.jp-DirListing-content {
flex: 1 1 auto;
margin: 0;
padding: 0;
list-style-type: none;
overflow: auto;
background-color: var(--jp-layout-color1);
}
.jp-DirListing-content mark {
color: var(--jp-ui-font-color0);
background-color: transparent;
font-weight: bold;
}
.jp-DirListing-content .jp-DirListing-item.jp-mod-selected mark {
color: var(--jp-ui-inverse-font-color0);
}
/* Style the directory listing content when a user drops a file to upload */
.jp-DirListing.jp-mod-native-drop .jp-DirListing-content {
outline: 5px dashed rgba(128, 128, 128, 0.5);
outline-offset: -10px;
cursor: copy;
}
.jp-DirListing-item {
display: flex;
flex-direction: row;
align-items: center;
padding: 4px 12px;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.jp-DirListing-checkboxWrapper {
/* Increases hit area of checkbox. */
padding: 4px;
}
.jp-DirListing-header
.jp-DirListing-checkboxWrapper
+ .jp-DirListing-headerItem {
padding-left: 4px;
}
.jp-DirListing-content .jp-DirListing-checkboxWrapper {
position: relative;
left: -4px;
margin: -4px 0 -4px -8px;
}
.jp-DirListing-checkboxWrapper.jp-mod-visible {
visibility: visible;
}
/* For devices that support hovering, hide checkboxes until hovered, selected...
*/
@media (hover: hover) {
.jp-DirListing-checkboxWrapper {
visibility: hidden;
}
.jp-DirListing-item:hover .jp-DirListing-checkboxWrapper,
.jp-DirListing-item.jp-mod-selected .jp-DirListing-checkboxWrapper {
visibility: visible;
}
}
.jp-DirListing-item[data-is-dot] {
opacity: 75%;
}
.jp-DirListing-item.jp-mod-selected {
color: var(--jp-ui-inverse-font-color1);
background: var(--jp-brand-color1);
}
.jp-DirListing-item.jp-mod-dropTarget {
background: var(--jp-brand-color3);
}
.jp-DirListing-item:hover:not(.jp-mod-selected) {
background: var(--jp-layout-color2);
}
.jp-DirListing-itemIcon {
flex: 0 0 20px;
margin-right: 4px;
}
.jp-DirListing-itemText {
flex: 1 0 64px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
user-select: none;
}
.jp-DirListing-itemText:focus {
outline-width: 2px;
outline-color: var(--jp-inverse-layout-color1);
outline-style: solid;
outline-offset: 1px;
}
.jp-DirListing-item.jp-mod-selected .jp-DirListing-itemText:focus {
outline-color: var(--jp-layout-color1);
}
.jp-DirListing-itemModified {
flex: 0 0 125px;
text-align: right;
}
.jp-DirListing-itemFileSize {
flex: 0 0 90px;
text-align: right;
}
.jp-DirListing-editor {
flex: 1 0 64px;
outline: none;
border: none;
color: var(--jp-ui-font-color1);
background-color: var(--jp-layout-color1);
}
.jp-DirListing-item.jp-mod-running .jp-DirListing-itemIcon::before {
color: var(--jp-success-color1);
content: '\25CF';
font-size: 8px;
position: absolute;
left: -8px;
}
.jp-DirListing-item.jp-mod-running.jp-mod-selected
.jp-DirListing-itemIcon::before {
color: var(--jp-ui-inverse-font-color1);
}
.jp-DirListing-item.lm-mod-drag-image,
.jp-DirListing-item.jp-mod-selected.lm-mod-drag-image {
font-size: var(--jp-ui-font-size1);
padding-left: 4px;
margin-left: 4px;
width: 160px;
background-color: var(--jp-ui-inverse-font-color2);
box-shadow: var(--jp-elevation-z2);
border-radius: 0;
color: var(--jp-ui-font-color1);
transform: translateX(-40%) translateY(-58%);
}
.jp-Document {
min-width: 120px;
min-height: 120px;
outline: none;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Main OutputArea
| OutputArea has a list of Outputs
|----------------------------------------------------------------------------*/
.jp-OutputArea {
overflow-y: auto;
}
.jp-OutputArea-child {
display: table;
table-layout: fixed;
width: 100%;
overflow: hidden;
}
.jp-OutputPrompt {
width: var(--jp-cell-prompt-width);
color: var(--jp-cell-outprompt-font-color);
font-family: var(--jp-cell-prompt-font-family);
padding: var(--jp-code-padding);
letter-spacing: var(--jp-cell-prompt-letter-spacing);
line-height: var(--jp-code-line-height);
font-size: var(--jp-code-font-size);
border: var(--jp-border-width) solid transparent;
opacity: var(--jp-cell-prompt-opacity);
/* Right align prompt text, don't wrap to handle large prompt numbers */
text-align: right;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
/* Disable text selection */
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.jp-OutputArea-prompt {
display: table-cell;
vertical-align: top;
}
.jp-OutputArea-output {
display: table-cell;
width: 100%;
height: auto;
overflow: auto;
user-select: text;
-moz-user-select: text;
-webkit-user-select: text;
-ms-user-select: text;
}
.jp-OutputArea .jp-RenderedText {
padding-left: 1ch;
}
/**
* Prompt overlay.
*/
.jp-OutputArea-promptOverlay {
position: absolute;
top: 0;
width: var(--jp-cell-prompt-width);
height: 100%;
opacity: 0.5;
}
.jp-OutputArea-promptOverlay:hover {
background: var(--jp-layout-color2);
box-shadow: inset 0 0 1px var(--jp-inverse-layout-color0);
cursor: zoom-out;
}
.jp-mod-outputsScrolled .jp-OutputArea-promptOverlay:hover {
cursor: zoom-in;
}
/**
* Isolated output.
*/
.jp-OutputArea-output.jp-mod-isolated {
width: 100%;
display: block;
}
/*
When drag events occur, `lm-mod-override-cursor` is added to the body.
Because iframes steal all cursor events, the following two rules are necessary
to suppress pointer events while resize drags are occurring. There may be a
better solution to this problem.
*/
body.lm-mod-override-cursor .jp-OutputArea-output.jp-mod-isolated {
position: relative;
}
body.lm-mod-override-cursor .jp-OutputArea-output.jp-mod-isolated::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: transparent;
}
/* pre */
.jp-OutputArea-output pre {
border: none;
margin: 0;
padding: 0;
overflow-x: auto;
overflow-y: auto;
word-break: break-all;
word-wrap: break-word;
white-space: pre-wrap;
}
/* tables */
.jp-OutputArea-output.jp-RenderedHTMLCommon table {
margin-left: 0;
margin-right: 0;
}
/* description lists */
.jp-OutputArea-output dl,
.jp-OutputArea-output dt,
.jp-OutputArea-output dd {
display: block;
}
.jp-OutputArea-output dl {
width: 100%;
overflow: hidden;
padding: 0;
margin: 0;
}
.jp-OutputArea-output dt {
font-weight: bold;
float: left;
width: 20%;
padding: 0;
margin: 0;
}
.jp-OutputArea-output dd {
float: left;
width: 80%;
padding: 0;
margin: 0;
}
.jp-TrimmedOutputs pre {
background: var(--jp-layout-color3);
font-size: calc(var(--jp-code-font-size) * 1.4);
text-align: center;
text-transform: uppercase;
}
/* Hide the gutter in case of
* - nested output areas (e.g. in the case of output widgets)
* - mirrored output areas
*/
.jp-OutputArea .jp-OutputArea .jp-OutputArea-prompt {
display: none;
}
/* Hide empty lines in the output area, for instance due to cleared widgets */
.jp-OutputArea-prompt:empty {
padding: 0;
border: 0;
}
/*-----------------------------------------------------------------------------
| executeResult is added to any Output-result for the display of the object
| returned by a cell
|----------------------------------------------------------------------------*/
.jp-OutputArea-output.jp-OutputArea-executeResult {
margin-left: 0;
width: 100%;
}
/* Text output with the Out[] prompt needs a top padding to match the
* alignment of the Out[] prompt itself.
*/
.jp-OutputArea-executeResult .jp-RenderedText.jp-OutputArea-output {
padding-top: var(--jp-code-padding);
border-top: var(--jp-border-width) solid transparent;
}
/*-----------------------------------------------------------------------------
| The Stdin output
|----------------------------------------------------------------------------*/
.jp-Stdin-prompt {
color: var(--jp-content-font-color0);
padding-right: var(--jp-code-padding);
vertical-align: baseline;
flex: 0 0 auto;
}
.jp-Stdin-input {
font-family: var(--jp-code-font-family);
font-size: inherit;
color: inherit;
background-color: inherit;
width: 42%;
min-width: 200px;
/* make sure input baseline aligns with prompt */
vertical-align: baseline;
/* padding + margin = 0.5em between prompt and cursor */
padding: 0 0.25em;
margin: 0 0.25em;
flex: 0 0 70%;
}
.jp-Stdin-input::placeholder {
opacity: 0;
}
.jp-Stdin-input:focus {
box-shadow: none;
}
.jp-Stdin-input:focus::placeholder {
opacity: 1;
}
/*-----------------------------------------------------------------------------
| Output Area View
|----------------------------------------------------------------------------*/
.jp-LinkedOutputView .jp-OutputArea {
height: 100%;
display: block;
}
.jp-LinkedOutputView .jp-OutputArea-output:only-child {
height: 100%;
}
/*-----------------------------------------------------------------------------
| Printing
|----------------------------------------------------------------------------*/
@media print {
.jp-OutputArea-child {
break-inside: avoid-page;
}
}
/*-----------------------------------------------------------------------------
| Mobile
|----------------------------------------------------------------------------*/
@media only screen and (max-width: 760px) {
.jp-OutputPrompt {
display: table-row;
text-align: left;
}
.jp-OutputArea-child .jp-OutputArea-output {
display: table-row;
margin-left: var(--jp-notebook-padding);
}
}
/* Trimmed outputs warning */
.jp-TrimmedOutputs > a {
margin: 10px;
text-decoration: none;
cursor: pointer;
}
.jp-TrimmedOutputs > a:hover {
text-decoration: none;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Table of Contents
|----------------------------------------------------------------------------*/
:root {
--jp-private-toc-active-width: 4px;
}
.jp-TableOfContents {
display: flex;
flex-direction: column;
background: var(--jp-layout-color1);
color: var(--jp-ui-font-color1);
font-size: var(--jp-ui-font-size1);
height: 100%;
}
.jp-TableOfContents-placeholder {
text-align: center;
}
.jp-TableOfContents-placeholderContent {
color: var(--jp-content-font-color2);
padding: 8px;
}
.jp-TableOfContents-placeholderContent > h3 {
margin-bottom: var(--jp-content-heading-margin-bottom);
}
.jp-TableOfContents .jp-SidePanel-content {
overflow-y: auto;
}
.jp-TableOfContents-tree {
margin: 4px;
}
.jp-TableOfContents ol {
list-style-type: none;
}
/* stylelint-disable-next-line selector-max-type */
.jp-TableOfContents li > ol {
/* Align left border with triangle icon center */
padding-left: 11px;
}
.jp-TableOfContents-content {
/* left margin for the active heading indicator */
margin: 0 0 0 var(--jp-private-toc-active-width);
padding: 0;
background-color: var(--jp-layout-color1);
}
.jp-tocItem {
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.jp-tocItem-heading {
display: flex;
cursor: pointer;
}
.jp-tocItem-heading:hover {
background-color: var(--jp-layout-color2);
}
.jp-tocItem-content {
display: block;
padding: 4px 0;
white-space: nowrap;
text-overflow: ellipsis;
overflow-x: hidden;
}
.jp-tocItem-collapser {
height: 20px;
margin: 2px 2px 0;
padding: 0;
background: none;
border: none;
cursor: pointer;
}
.jp-tocItem-collapser:hover {
background-color: var(--jp-layout-color3);
}
/* Active heading indicator */
.jp-tocItem-heading::before {
content: ' ';
background: transparent;
width: var(--jp-private-toc-active-width);
height: 24px;
position: absolute;
left: 0;
border-radius: var(--jp-border-radius);
}
.jp-tocItem-heading.jp-tocItem-active::before {
background-color: var(--jp-brand-color1);
}
.jp-tocItem-heading:hover.jp-tocItem-active::before {
background: var(--jp-brand-color0);
opacity: 1;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
.jp-Collapser {
flex: 0 0 var(--jp-cell-collapser-width);
padding: 0;
margin: 0;
border: none;
outline: none;
background: transparent;
border-radius: var(--jp-border-radius);
opacity: 1;
}
.jp-Collapser-child {
display: block;
width: 100%;
box-sizing: border-box;
/* height: 100% doesn't work because the height of its parent is computed from content */
position: absolute;
top: 0;
bottom: 0;
}
/*-----------------------------------------------------------------------------
| Printing
|----------------------------------------------------------------------------*/
/*
Hiding collapsers in print mode.
Note: input and output wrappers have "display: block" propery in print mode.
*/
@media print {
.jp-Collapser {
display: none;
}
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Header/Footer
|----------------------------------------------------------------------------*/
/* Hidden by zero height by default */
.jp-CellHeader,
.jp-CellFooter {
height: 0;
width: 100%;
padding: 0;
margin: 0;
border: none;
outline: none;
background: transparent;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Input
|----------------------------------------------------------------------------*/
/* All input areas */
.jp-InputArea {
display: table;
table-layout: fixed;
width: 100%;
overflow: hidden;
}
.jp-InputArea-editor {
display: table-cell;
overflow: hidden;
vertical-align: top;
/* This is the non-active, default styling */
border: var(--jp-border-width) solid var(--jp-cell-editor-border-color);
border-radius: 0;
background: var(--jp-cell-editor-background);
}
.jp-InputPrompt {
display: table-cell;
vertical-align: top;
width: var(--jp-cell-prompt-width);
color: var(--jp-cell-inprompt-font-color);
font-family: var(--jp-cell-prompt-font-family);
padding: var(--jp-code-padding);
letter-spacing: var(--jp-cell-prompt-letter-spacing);
opacity: var(--jp-cell-prompt-opacity);
line-height: var(--jp-code-line-height);
font-size: var(--jp-code-font-size);
border: var(--jp-border-width) solid transparent;
/* Right align prompt text, don't wrap to handle large prompt numbers */
text-align: right;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
/* Disable text selection */
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
/*-----------------------------------------------------------------------------
| Mobile
|----------------------------------------------------------------------------*/
@media only screen and (max-width: 760px) {
.jp-InputArea-editor {
display: table-row;
margin-left: var(--jp-notebook-padding);
}
.jp-InputPrompt {
display: table-row;
text-align: left;
}
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Placeholder
|----------------------------------------------------------------------------*/
.jp-Placeholder {
display: table;
table-layout: fixed;
width: 100%;
}
.jp-Placeholder-prompt {
display: table-cell;
box-sizing: border-box;
}
.jp-Placeholder-content {
display: table-cell;
padding: 4px 6px;
border: 1px solid transparent;
border-radius: 0;
background: none;
box-sizing: border-box;
cursor: pointer;
}
.jp-Placeholder-contentContainer {
display: flex;
}
.jp-Placeholder-content:hover,
.jp-InputPlaceholder > .jp-Placeholder-content:hover {
border-color: var(--jp-layout-color3);
}
.jp-Placeholder-content .jp-MoreHorizIcon {
width: 32px;
height: 16px;
border: 1px solid transparent;
border-radius: var(--jp-border-radius);
}
.jp-Placeholder-content .jp-MoreHorizIcon:hover {
border: 1px solid var(--jp-border-color1);
box-shadow: 0 0 2px 0 rgba(0, 0, 0, 0.25);
background-color: var(--jp-layout-color0);
}
.jp-PlaceholderText {
white-space: nowrap;
overflow-x: hidden;
color: var(--jp-inverse-layout-color3);
font-family: var(--jp-code-font-family);
}
.jp-InputPlaceholder > .jp-Placeholder-content {
border-color: var(--jp-cell-editor-border-color);
background: var(--jp-cell-editor-background);
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Private CSS variables
|----------------------------------------------------------------------------*/
:root {
--jp-private-cell-scrolling-output-offset: 5px;
}
/*-----------------------------------------------------------------------------
| Cell
|----------------------------------------------------------------------------*/
.jp-Cell {
padding: var(--jp-cell-padding);
margin: 0;
border: none;
outline: none;
background: transparent;
}
/*-----------------------------------------------------------------------------
| Common input/output
|----------------------------------------------------------------------------*/
.jp-Cell-inputWrapper,
.jp-Cell-outputWrapper {
display: flex;
flex-direction: row;
padding: 0;
margin: 0;
/* Added to reveal the box-shadow on the input and output collapsers. */
overflow: visible;
}
/* Only input/output areas inside cells */
.jp-Cell-inputArea,
.jp-Cell-outputArea {
flex: 1 1 auto;
}
/*-----------------------------------------------------------------------------
| Collapser
|----------------------------------------------------------------------------*/
/* Make the output collapser disappear when there is not output, but do so
* in a manner that leaves it in the layout and preserves its width.
*/
.jp-Cell.jp-mod-noOutputs .jp-Cell-outputCollapser {
border: none !important;
background: transparent !important;
}
.jp-Cell:not(.jp-mod-noOutputs) .jp-Cell-outputCollapser {
min-height: var(--jp-cell-collapser-min-height);
}
/*-----------------------------------------------------------------------------
| Output
|----------------------------------------------------------------------------*/
/* Put a space between input and output when there IS output */
.jp-Cell:not(.jp-mod-noOutputs) .jp-Cell-outputWrapper {
margin-top: 5px;
}
.jp-CodeCell.jp-mod-outputsScrolled .jp-Cell-outputArea {
overflow-y: auto;
max-height: 24em;
margin-left: var(--jp-private-cell-scrolling-output-offset);
resize: vertical;
}
.jp-CodeCell.jp-mod-outputsScrolled .jp-Cell-outputArea[style*='height'] {
max-height: unset;
}
.jp-CodeCell.jp-mod-outputsScrolled .jp-Cell-outputArea::after {
content: ' ';
box-shadow: inset 0 0 6px 2px rgb(0 0 0 / 30%);
width: 100%;
height: 100%;
position: sticky;
bottom: 0;
top: 0;
margin-top: -50%;
float: left;
display: block;
pointer-events: none;
}
.jp-CodeCell.jp-mod-outputsScrolled .jp-OutputArea-child {
padding-top: 6px;
}
.jp-CodeCell.jp-mod-outputsScrolled .jp-OutputArea-prompt {
width: calc(
var(--jp-cell-prompt-width) - var(--jp-private-cell-scrolling-output-offset)
);
}
.jp-CodeCell.jp-mod-outputsScrolled .jp-OutputArea-promptOverlay {
left: calc(-1 * var(--jp-private-cell-scrolling-output-offset));
}
/*-----------------------------------------------------------------------------
| CodeCell
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| MarkdownCell
|----------------------------------------------------------------------------*/
.jp-MarkdownOutput {
display: table-cell;
width: 100%;
margin-top: 0;
margin-bottom: 0;
padding-left: var(--jp-code-padding);
}
.jp-MarkdownOutput.jp-RenderedHTMLCommon {
overflow: auto;
}
/* collapseHeadingButton (show always if hiddenCellsButton is _not_ shown) */
.jp-collapseHeadingButton {
display: flex;
min-height: var(--jp-cell-collapser-min-height);
font-size: var(--jp-code-font-size);
position: absolute;
background-color: transparent;
background-size: 25px;
background-repeat: no-repeat;
background-position-x: center;
background-position-y: top;
background-image: var(--jp-icon-caret-down);
right: 0;
top: 0;
bottom: 0;
}
.jp-collapseHeadingButton.jp-mod-collapsed {
background-image: var(--jp-icon-caret-right);
}
/*
set the container font size to match that of content
so that the nested collapse buttons have the right size
*/
.jp-MarkdownCell .jp-InputPrompt {
font-size: var(--jp-content-font-size1);
}
/*
Align collapseHeadingButton with cell top header
The font sizes are identical to the ones in packages/rendermime/style/base.css
*/
.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='1'] {
font-size: var(--jp-content-font-size5);
background-position-y: calc(0.3 * var(--jp-content-font-size5));
}
.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='2'] {
font-size: var(--jp-content-font-size4);
background-position-y: calc(0.3 * var(--jp-content-font-size4));
}
.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='3'] {
font-size: var(--jp-content-font-size3);
background-position-y: calc(0.3 * var(--jp-content-font-size3));
}
.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='4'] {
font-size: var(--jp-content-font-size2);
background-position-y: calc(0.3 * var(--jp-content-font-size2));
}
.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='5'] {
font-size: var(--jp-content-font-size1);
background-position-y: top;
}
.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='6'] {
font-size: var(--jp-content-font-size0);
background-position-y: top;
}
/* collapseHeadingButton (show only on (hover,active) if hiddenCellsButton is shown) */
.jp-Notebook.jp-mod-showHiddenCellsButton .jp-collapseHeadingButton {
display: none;
}
.jp-Notebook.jp-mod-showHiddenCellsButton
:is(.jp-MarkdownCell:hover, .jp-mod-active)
.jp-collapseHeadingButton {
display: flex;
}
/* showHiddenCellsButton (only show if jp-mod-showHiddenCellsButton is set, which
is a consequence of the showHiddenCellsButton option in Notebook Settings)*/
.jp-Notebook.jp-mod-showHiddenCellsButton .jp-showHiddenCellsButton {
margin-left: calc(var(--jp-cell-prompt-width) + 2 * var(--jp-code-padding));
margin-top: var(--jp-code-padding);
border: 1px solid var(--jp-border-color2);
background-color: var(--jp-border-color3) !important;
color: var(--jp-content-font-color0) !important;
display: flex;
}
.jp-Notebook.jp-mod-showHiddenCellsButton .jp-showHiddenCellsButton:hover {
background-color: var(--jp-border-color2) !important;
}
.jp-showHiddenCellsButton {
display: none;
}
/*-----------------------------------------------------------------------------
| Printing
|----------------------------------------------------------------------------*/
/*
Using block instead of flex to allow the use of the break-inside CSS property for
cell outputs.
*/
@media print {
.jp-Cell-inputWrapper,
.jp-Cell-outputWrapper {
display: block;
}
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Variables
|----------------------------------------------------------------------------*/
:root {
--jp-notebook-toolbar-padding: 2px 5px 2px 2px;
}
/*-----------------------------------------------------------------------------
/*-----------------------------------------------------------------------------
| Styles
|----------------------------------------------------------------------------*/
.jp-NotebookPanel-toolbar {
padding: var(--jp-notebook-toolbar-padding);
/* disable paint containment from lumino 2.0 default strict CSS containment */
contain: style size !important;
}
.jp-Toolbar-item.jp-Notebook-toolbarCellType .jp-select-wrapper.jp-mod-focused {
border: none;
box-shadow: none;
}
.jp-Notebook-toolbarCellTypeDropdown select {
height: 24px;
font-size: var(--jp-ui-font-size1);
line-height: 14px;
border-radius: 0;
display: block;
}
.jp-Notebook-toolbarCellTypeDropdown span {
top: 5px !important;
}
.jp-Toolbar-responsive-popup {
position: absolute;
height: fit-content;
display: flex;
flex-direction: row;
flex-wrap: wrap;
justify-content: flex-end;
border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color);
box-shadow: var(--jp-toolbar-box-shadow);
background: var(--jp-toolbar-background);
min-height: var(--jp-toolbar-micro-height);
padding: var(--jp-notebook-toolbar-padding);
z-index: 1;
right: 0;
top: 0;
}
.jp-Toolbar > .jp-Toolbar-responsive-opener {
margin-left: auto;
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Variables
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
/*-----------------------------------------------------------------------------
| Styles
|----------------------------------------------------------------------------*/
.jp-Notebook-ExecutionIndicator {
position: relative;
display: inline-block;
height: 100%;
z-index: 9997;
}
.jp-Notebook-ExecutionIndicator-tooltip {
visibility: hidden;
height: auto;
width: max-content;
width: -moz-max-content;
background-color: var(--jp-layout-color2);
color: var(--jp-ui-font-color1);
text-align: justify;
border-radius: 6px;
padding: 0 5px;
position: fixed;
display: table;
}
.jp-Notebook-ExecutionIndicator-tooltip.up {
transform: translateX(-50%) translateY(-100%) translateY(-32px);
}
.jp-Notebook-ExecutionIndicator-tooltip.down {
transform: translateX(calc(-100% + 16px)) translateY(5px);
}
.jp-Notebook-ExecutionIndicator-tooltip.hidden {
display: none;
}
.jp-Notebook-ExecutionIndicator:hover .jp-Notebook-ExecutionIndicator-tooltip {
visibility: visible;
}
.jp-Notebook-ExecutionIndicator span {
font-size: var(--jp-ui-font-size1);
font-family: var(--jp-ui-font-family);
color: var(--jp-ui-font-color1);
line-height: 24px;
display: block;
}
.jp-Notebook-ExecutionIndicator-progress-bar {
display: flex;
justify-content: center;
height: 100%;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
/*
* Execution indicator
*/
.jp-tocItem-content::after {
content: '';
/* Must be identical to form a circle */
width: 12px;
height: 12px;
background: none;
border: none;
position: absolute;
right: 0;
}
.jp-tocItem-content[data-running='0']::after {
border-radius: 50%;
border: var(--jp-border-width) solid var(--jp-inverse-layout-color3);
background: none;
}
.jp-tocItem-content[data-running='1']::after {
border-radius: 50%;
border: var(--jp-border-width) solid var(--jp-inverse-layout-color3);
background-color: var(--jp-inverse-layout-color3);
}
.jp-tocItem-content[data-running='0'],
.jp-tocItem-content[data-running='1'] {
margin-right: 12px;
}
/*
* Copyright (c) Jupyter Development Team.
* Distributed under the terms of the Modified BSD License.
*/
.jp-Notebook-footer {
height: 27px;
margin-left: calc(
var(--jp-cell-prompt-width) + var(--jp-cell-collapser-width) +
var(--jp-cell-padding)
);
width: calc(
100% -
(
var(--jp-cell-prompt-width) + var(--jp-cell-collapser-width) +
var(--jp-cell-padding) + var(--jp-cell-padding)
)
);
border: var(--jp-border-width) solid var(--jp-cell-editor-border-color);
color: var(--jp-ui-font-color3);
margin-top: 6px;
background: none;
cursor: pointer;
}
.jp-Notebook-footer:focus {
border-color: var(--jp-cell-editor-active-border-color);
}
/* For devices that support hovering, hide footer until hover */
@media (hover: hover) {
.jp-Notebook-footer {
opacity: 0;
}
.jp-Notebook-footer:focus,
.jp-Notebook-footer:hover {
opacity: 1;
}
}
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| Imports
|----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
| CSS variables
|----------------------------------------------------------------------------*/
:root {
--jp-side-by-side-output-size: 1fr;
--jp-side-by-side-resized-cell: var(--jp-side-by-side-output-size);
--jp-private-notebook-dragImage-width: 304px;
--jp-private-notebook-dragImage-height: 36px;
--jp-private-notebook-selected-color: var(--md-blue-400);
--jp-private-notebook-active-color: var(--md-green-400);
}
/*-----------------------------------------------------------------------------
| Notebook
|----------------------------------------------------------------------------*/
/* stylelint-disable selector-max-class */
.jp-NotebookPanel {
display: block;
height: 100%;
}
.jp-NotebookPanel.jp-Document {
min-width: 240px;
min-height: 120px;
}
.jp-Notebook {
padding: var(--jp-notebook-padding);
outline: none;
overflow: auto;
background: var(--jp-layout-color0);
}
.jp-Notebook.jp-mod-scrollPastEnd::after {
display: block;
content: '';
min-height: var(--jp-notebook-scroll-padding);
}
.jp-MainAreaWidget-ContainStrict .jp-Notebook * {
contain: strict;
}
.jp-Notebook .jp-Cell {
overflow: visible;
}
.jp-Notebook .jp-Cell .jp-InputPrompt {
cursor: move;
}
/*-----------------------------------------------------------------------------
| Notebook state related styling
|
| The notebook and cells each have states, here are the possibilities:
|
| - Notebook
| - Command
| - Edit
| - Cell
| - None
| - Active (only one can be active)
| - Selected (the cells actions are applied to)
| - Multiselected (when multiple selected, the cursor)
| - No outputs
|----------------------------------------------------------------------------*/
/* Command or edit modes */
.jp-Notebook .jp-Cell:not(.jp-mod-active) .jp-InputPrompt {
opacity: var(--jp-cell-prompt-not-active-opacity);
color: var(--jp-cell-prompt-not-active-font-color);
}
.jp-Notebook .jp-Cell:not(.jp-mod-active) .jp-OutputPrompt {
opacity: var(--jp-cell-prompt-not-active-opacity);
color: var(--jp-cell-prompt-not-active-font-color);
}
/* cell is active */
.jp-Notebook .jp-Cell.jp-mod-active .jp-Collapser {
background: var(--jp-brand-color1);
}
/* cell is dirty */
.jp-Notebook .jp-Cell.jp-mod-dirty .jp-InputPrompt {
color: var(--jp-warn-color1);
}
.jp-Notebook .jp-Cell.jp-mod-dirty .jp-InputPrompt::before {
color: var(--jp-warn-color1);
content: '•';
}
.jp-Notebook .jp-Cell.jp-mod-active.jp-mod-dirty .jp-Collapser {
background: var(--jp-warn-color1);
}
/* collapser is hovered */
.jp-Notebook .jp-Cell .jp-Collapser:hover {
box-shadow: var(--jp-elevation-z2);
background: var(--jp-brand-color1);
opacity: var(--jp-cell-collapser-not-active-hover-opacity);
}
/* cell is active and collapser is hovered */
.jp-Notebook .jp-Cell.jp-mod-active .jp-Collapser:hover {
background: var(--jp-brand-color0);
opacity: 1;
}
/* Command mode */
.jp-Notebook.jp-mod-commandMode .jp-Cell.jp-mod-selected {
background: var(--jp-notebook-multiselected-color);
}
.jp-Notebook.jp-mod-commandMode
.jp-Cell.jp-mod-active.jp-mod-selected:not(.jp-mod-multiSelected) {
background: transparent;
}
/* Edit mode */
.jp-Notebook.jp-mod-editMode .jp-Cell.jp-mod-active .jp-InputArea-editor {
border: var(--jp-border-width) solid var(--jp-cell-editor-active-border-color);
box-shadow: var(--jp-input-box-shadow);
background-color: var(--jp-cell-editor-active-background);
}
/*-----------------------------------------------------------------------------
| Notebook drag and drop
|----------------------------------------------------------------------------*/
.jp-Notebook-cell.jp-mod-dropSource {
opacity: 0.5;
}
.jp-Notebook-cell.jp-mod-dropTarget,
.jp-Notebook.jp-mod-commandMode
.jp-Notebook-cell.jp-mod-active.jp-mod-selected.jp-mod-dropTarget {
border-top-color: var(--jp-private-notebook-selected-color);
border-top-style: solid;
border-top-width: 2px;
}
.jp-dragImage {
display: block;
flex-direction: row;
width: var(--jp-private-notebook-dragImage-width);
height: var(--jp-private-notebook-dragImage-height);
border: var(--jp-border-width) solid var(--jp-cell-editor-border-color);
background: var(--jp-cell-editor-background);
overflow: visible;
}
.jp-dragImage-singlePrompt {
box-shadow: 2px 2px 4px 0 rgba(0, 0, 0, 0.12);
}
.jp-dragImage .jp-dragImage-content {
flex: 1 1 auto;
z-index: 2;
font-size: var(--jp-code-font-size);
font-family: var(--jp-code-font-family);
line-height: var(--jp-code-line-height);
padding: var(--jp-code-padding);
border: var(--jp-border-width) solid var(--jp-cell-editor-border-color);
background: var(--jp-cell-editor-background-color);
color: var(--jp-content-font-color3);
text-align: left;
margin: 4px 4px 4px 0;
}
.jp-dragImage .jp-dragImage-prompt {
flex: 0 0 auto;
min-width: 36px;
color: var(--jp-cell-inprompt-font-color);
padding: var(--jp-code-padding);
padding-left: 12px;
font-family: var(--jp-cell-prompt-font-family);
letter-spacing: var(--jp-cell-prompt-letter-spacing);
line-height: 1.9;
font-size: var(--jp-code-font-size);
border: var(--jp-border-width) solid transparent;
}
.jp-dragImage-multipleBack {
z-index: -1;
position: absolute;
height: 32px;
width: 300px;
top: 8px;
left: 8px;
background: var(--jp-layout-color2);
border: var(--jp-border-width) solid var(--jp-input-border-color);
box-shadow: 2px 2px 4px 0 rgba(0, 0, 0, 0.12);
}
/*-----------------------------------------------------------------------------
| Cell toolbar
|----------------------------------------------------------------------------*/
.jp-NotebookTools {
display: block;
min-width: var(--jp-sidebar-min-width);
color: var(--jp-ui-font-color1);
background: var(--jp-layout-color1);
/* This is needed so that all font sizing of children done in ems is
* relative to this base size */
font-size: var(--jp-ui-font-size1);
overflow: auto;
}
.jp-ActiveCellTool {
padding: 12px 0;
display: flex;
}
.jp-ActiveCellTool-Content {
flex: 1 1 auto;
}
.jp-ActiveCellTool .jp-ActiveCellTool-CellContent {
background: var(--jp-cell-editor-background);
border: var(--jp-border-width) solid var(--jp-cell-editor-border-color);
border-radius: 0;
min-height: 29px;
}
.jp-ActiveCellTool .jp-InputPrompt {
min-width: calc(var(--jp-cell-prompt-width) * 0.75);
}
.jp-ActiveCellTool-CellContent > pre {
padding: 5px 4px;
margin: 0;
white-space: normal;
}
.jp-MetadataEditorTool {
flex-direction: column;
padding: 12px 0;
}
.jp-RankedPanel > :not(:first-child) {
margin-top: 12px;
}
.jp-KeySelector select.jp-mod-styled {
font-size: var(--jp-ui-font-size1);
color: var(--jp-ui-font-color0);
border: var(--jp-border-width) solid var(--jp-border-color1);
}
.jp-KeySelector label,
.jp-MetadataEditorTool label,
.jp-NumberSetter label {
line-height: 1.4;
}
.jp-NotebookTools .jp-select-wrapper {
margin-top: 4px;
margin-bottom: 0;
}
.jp-NumberSetter input {
width: 100%;
margin-top: 4px;
}
.jp-NotebookTools .jp-Collapse {
margin-top: 16px;
}
/*-----------------------------------------------------------------------------
| Presentation Mode (.jp-mod-presentationMode)
|----------------------------------------------------------------------------*/
.jp-mod-presentationMode .jp-Notebook {
--jp-content-font-size1: var(--jp-content-presentation-font-size1);
--jp-code-font-size: var(--jp-code-presentation-font-size);
}
.jp-mod-presentationMode .jp-Notebook .jp-Cell .jp-InputPrompt,
.jp-mod-presentationMode .jp-Notebook .jp-Cell .jp-OutputPrompt {
flex: 0 0 110px;
}
/*-----------------------------------------------------------------------------
| Side-by-side Mode (.jp-mod-sideBySide)
|----------------------------------------------------------------------------*/
.jp-mod-sideBySide.jp-Notebook .jp-Notebook-cell {
margin-top: 3em;
margin-bottom: 3em;
margin-left: 5%;
margin-right: 5%;
}
.jp-mod-sideBySide.jp-Notebook .jp-CodeCell {
display: grid;
grid-template-columns: minmax(0, 1fr) min-content minmax(
0,
var(--jp-side-by-side-output-size)
);
grid-template-rows: auto minmax(0, 1fr) auto;
grid-template-areas:
'header header header'
'input handle output'
'footer footer footer';
}
.jp-mod-sideBySide.jp-Notebook .jp-CodeCell.jp-mod-resizedCell {
grid-template-columns: minmax(0, 1fr) min-content minmax(
0,
var(--jp-side-by-side-resized-cell)
);
}
.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-CellHeader {
grid-area: header;
}
.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-Cell-inputWrapper {
grid-area: input;
}
.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-Cell-outputWrapper {
/* overwrite the default margin (no vertical separation needed in side by side move */
margin-top: 0;
grid-area: output;
}
.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-CellFooter {
grid-area: footer;
}
.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-CellResizeHandle {
grid-area: handle;
user-select: none;
display: block;
height: 100%;
cursor: ew-resize;
padding: 0 var(--jp-cell-padding);
}
.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-CellResizeHandle::after {
content: '';
display: block;
background: var(--jp-border-color2);
height: 100%;
width: 5px;
}
.jp-mod-sideBySide.jp-Notebook
.jp-CodeCell.jp-mod-resizedCell
.jp-CellResizeHandle::after {
background: var(--jp-border-color0);
}
.jp-CellResizeHandle {
display: none;
}
/*-----------------------------------------------------------------------------
| Placeholder
|----------------------------------------------------------------------------*/
.jp-Cell-Placeholder {
padding-left: 55px;
}
.jp-Cell-Placeholder-wrapper {
background: #fff;
border: 1px solid;
border-color: #e5e6e9 #dfe0e4 #d0d1d5;
border-radius: 4px;
-webkit-border-radius: 4px;
margin: 10px 15px;
}
.jp-Cell-Placeholder-wrapper-inner {
padding: 15px;
position: relative;
}
.jp-Cell-Placeholder-wrapper-body {
background-repeat: repeat;
background-size: 50% auto;
}
.jp-Cell-Placeholder-wrapper-body div {
background: #f6f7f8;
background-image: -webkit-linear-gradient(
left,
#f6f7f8 0%,
#edeef1 20%,
#f6f7f8 40%,
#f6f7f8 100%
);
background-repeat: no-repeat;
background-size: 800px 104px;
height: 104px;
position: absolute;
right: 15px;
left: 15px;
top: 15px;
}
div.jp-Cell-Placeholder-h1 {
top: 20px;
height: 20px;
left: 15px;
width: 150px;
}
div.jp-Cell-Placeholder-h2 {
left: 15px;
top: 50px;
height: 10px;
width: 100px;
}
div.jp-Cell-Placeholder-content-1,
div.jp-Cell-Placeholder-content-2,
div.jp-Cell-Placeholder-content-3 {
left: 15px;
right: 15px;
height: 10px;
}
div.jp-Cell-Placeholder-content-1 {
top: 100px;
}
div.jp-Cell-Placeholder-content-2 {
top: 120px;
}
div.jp-Cell-Placeholder-content-3 {
top: 140px;
}
</style>
<style type="text/css">
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/
/*
The following CSS variables define the main, public API for styling JupyterLab.
These variables should be used by all plugins wherever possible. In other
words, plugins should not define custom colors, sizes, etc unless absolutely
necessary. This enables users to change the visual theme of JupyterLab
by changing these variables.
Many variables appear in an ordered sequence (0,1,2,3). These sequences
are designed to work well together, so for example, `--jp-border-color1` should
be used with `--jp-layout-color1`. The numbers have the following meanings:
* 0: super-primary, reserved for special emphasis
* 1: primary, most important under normal situations
* 2: secondary, next most important under normal situations
* 3: tertiary, next most important under normal situations
Throughout JupyterLab, we are mostly following principles from Google's
Material Design when selecting colors. We are not, however, following
all of MD as it is not optimized for dense, information rich UIs.
*/
:root {
/* Elevation
*
* We style box-shadows using Material Design's idea of elevation. These particular numbers are taken from here:
*
* https://github.com/material-components/material-components-web
* https://material-components-web.appspot.com/elevation.html
*/
--jp-shadow-base-lightness: 0;
--jp-shadow-umbra-color: rgba(
var(--jp-shadow-base-lightness),
var(--jp-shadow-base-lightness),
var(--jp-shadow-base-lightness),
0.2
);
--jp-shadow-penumbra-color: rgba(
var(--jp-shadow-base-lightness),
var(--jp-shadow-base-lightness),
var(--jp-shadow-base-lightness),
0.14
);
--jp-shadow-ambient-color: rgba(
var(--jp-shadow-base-lightness),
var(--jp-shadow-base-lightness),
var(--jp-shadow-base-lightness),
0.12
);
--jp-elevation-z0: none;
--jp-elevation-z1: 0 2px 1px -1px var(--jp-shadow-umbra-color),
0 1px 1px 0 var(--jp-shadow-penumbra-color),
0 1px 3px 0 var(--jp-shadow-ambient-color);
--jp-elevation-z2: 0 3px 1px -2px var(--jp-shadow-umbra-color),
0 2px 2px 0 var(--jp-shadow-penumbra-color),
0 1px 5px 0 var(--jp-shadow-ambient-color);
--jp-elevation-z4: 0 2px 4px -1px var(--jp-shadow-umbra-color),
0 4px 5px 0 var(--jp-shadow-penumbra-color),
0 1px 10px 0 var(--jp-shadow-ambient-color);
--jp-elevation-z6: 0 3px 5px -1px var(--jp-shadow-umbra-color),
0 6px 10px 0 var(--jp-shadow-penumbra-color),
0 1px 18px 0 var(--jp-shadow-ambient-color);
--jp-elevation-z8: 0 5px 5px -3px var(--jp-shadow-umbra-color),
0 8px 10px 1px var(--jp-shadow-penumbra-color),
0 3px 14px 2px var(--jp-shadow-ambient-color);
--jp-elevation-z12: 0 7px 8px -4px var(--jp-shadow-umbra-color),
0 12px 17px 2px var(--jp-shadow-penumbra-color),
0 5px 22px 4px var(--jp-shadow-ambient-color);
--jp-elevation-z16: 0 8px 10px -5px var(--jp-shadow-umbra-color),
0 16px 24px 2px var(--jp-shadow-penumbra-color),
0 6px 30px 5px var(--jp-shadow-ambient-color);
--jp-elevation-z20: 0 10px 13px -6px var(--jp-shadow-umbra-color),
0 20px 31px 3px var(--jp-shadow-penumbra-color),
0 8px 38px 7px var(--jp-shadow-ambient-color);
--jp-elevation-z24: 0 11px 15px -7px var(--jp-shadow-umbra-color),
0 24px 38px 3px var(--jp-shadow-penumbra-color),
0 9px 46px 8px var(--jp-shadow-ambient-color);
/* Borders
*
* The following variables, specify the visual styling of borders in JupyterLab.
*/
--jp-border-width: 1px;
--jp-border-color0: var(--md-grey-400);
--jp-border-color1: var(--md-grey-400);
--jp-border-color2: var(--md-grey-300);
--jp-border-color3: var(--md-grey-200);
--jp-inverse-border-color: var(--md-grey-600);
--jp-border-radius: 2px;
/* UI Fonts
*
* The UI font CSS variables are used for the typography all of the JupyterLab
* user interface elements that are not directly user generated content.
*
* The font sizing here is done assuming that the body font size of --jp-ui-font-size1
* is applied to a parent element. When children elements, such as headings, are sized
* in em all things will be computed relative to that body size.
*/
--jp-ui-font-scale-factor: 1.2;
--jp-ui-font-size0: 0.83333em;
--jp-ui-font-size1: 13px; /* Base font size */
--jp-ui-font-size2: 1.2em;
--jp-ui-font-size3: 1.44em;
--jp-ui-font-family: system-ui, -apple-system, blinkmacsystemfont, 'Segoe UI',
helvetica, arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji',
'Segoe UI Symbol';
/*
* Use these font colors against the corresponding main layout colors.
* In a light theme, these go from dark to light.
*/
/* Defaults use Material Design specification */
--jp-ui-font-color0: rgba(0, 0, 0, 1);
--jp-ui-font-color1: rgba(0, 0, 0, 0.87);
--jp-ui-font-color2: rgba(0, 0, 0, 0.54);
--jp-ui-font-color3: rgba(0, 0, 0, 0.38);
/*
* Use these against the brand/accent/warn/error colors.
* These will typically go from light to darker, in both a dark and light theme.
*/
--jp-ui-inverse-font-color0: rgba(255, 255, 255, 1);
--jp-ui-inverse-font-color1: rgba(255, 255, 255, 1);
--jp-ui-inverse-font-color2: rgba(255, 255, 255, 0.7);
--jp-ui-inverse-font-color3: rgba(255, 255, 255, 0.5);
/* Content Fonts
*
* Content font variables are used for typography of user generated content.
*
* The font sizing here is done assuming that the body font size of --jp-content-font-size1
* is applied to a parent element. When children elements, such as headings, are sized
* in em all things will be computed relative to that body size.
*/
--jp-content-line-height: 1.6;
--jp-content-font-scale-factor: 1.2;
--jp-content-font-size0: 0.83333em;
--jp-content-font-size1: 14px; /* Base font size */
--jp-content-font-size2: 1.2em;
--jp-content-font-size3: 1.44em;
--jp-content-font-size4: 1.728em;
--jp-content-font-size5: 2.0736em;
/* This gives a magnification of about 125% in presentation mode over normal. */
--jp-content-presentation-font-size1: 17px;
--jp-content-heading-line-height: 1;
--jp-content-heading-margin-top: 1.2em;
--jp-content-heading-margin-bottom: 0.8em;
--jp-content-heading-font-weight: 500;
/* Defaults use Material Design specification */
--jp-content-font-color0: rgba(0, 0, 0, 1);
--jp-content-font-color1: rgba(0, 0, 0, 0.87);
--jp-content-font-color2: rgba(0, 0, 0, 0.54);
--jp-content-font-color3: rgba(0, 0, 0, 0.38);
--jp-content-link-color: var(--md-blue-900);
--jp-content-font-family: system-ui, -apple-system, blinkmacsystemfont,
'Segoe UI', helvetica, arial, sans-serif, 'Apple Color Emoji',
'Segoe UI Emoji', 'Segoe UI Symbol';
/*
* Code Fonts
*
* Code font variables are used for typography of code and other monospaces content.
*/
--jp-code-font-size: 13px;
--jp-code-line-height: 1.3077; /* 17px for 13px base */
--jp-code-padding: 5px; /* 5px for 13px base, codemirror highlighting needs integer px value */
--jp-code-font-family-default: menlo, consolas, 'DejaVu Sans Mono', monospace;
--jp-code-font-family: var(--jp-code-font-family-default);
/* This gives a magnification of about 125% in presentation mode over normal. */
--jp-code-presentation-font-size: 16px;
/* may need to tweak cursor width if you change font size */
--jp-code-cursor-width0: 1.4px;
--jp-code-cursor-width1: 2px;
--jp-code-cursor-width2: 4px;
/* Layout
*
* The following are the main layout colors use in JupyterLab. In a light
* theme these would go from light to dark.
*/
--jp-layout-color0: white;
--jp-layout-color1: white;
--jp-layout-color2: var(--md-grey-200);
--jp-layout-color3: var(--md-grey-400);
--jp-layout-color4: var(--md-grey-600);
/* Inverse Layout
*
* The following are the inverse layout colors use in JupyterLab. In a light
* theme these would go from dark to light.
*/
--jp-inverse-layout-color0: #111;
--jp-inverse-layout-color1: var(--md-grey-900);
--jp-inverse-layout-color2: var(--md-grey-800);
--jp-inverse-layout-color3: var(--md-grey-700);
--jp-inverse-layout-color4: var(--md-grey-600);
/* Brand/accent */
--jp-brand-color0: var(--md-blue-900);
--jp-brand-color1: var(--md-blue-700);
--jp-brand-color2: var(--md-blue-300);
--jp-brand-color3: var(--md-blue-100);
--jp-brand-color4: var(--md-blue-50);
--jp-accent-color0: var(--md-green-900);
--jp-accent-color1: var(--md-green-700);
--jp-accent-color2: var(--md-green-300);
--jp-accent-color3: var(--md-green-100);
/* State colors (warn, error, success, info) */
--jp-warn-color0: var(--md-orange-900);
--jp-warn-color1: var(--md-orange-700);
--jp-warn-color2: var(--md-orange-300);
--jp-warn-color3: var(--md-orange-100);
--jp-error-color0: var(--md-red-900);
--jp-error-color1: var(--md-red-700);
--jp-error-color2: var(--md-red-300);
--jp-error-color3: var(--md-red-100);
--jp-success-color0: var(--md-green-900);
--jp-success-color1: var(--md-green-700);
--jp-success-color2: var(--md-green-300);
--jp-success-color3: var(--md-green-100);
--jp-info-color0: var(--md-cyan-900);
--jp-info-color1: var(--md-cyan-700);
--jp-info-color2: var(--md-cyan-300);
--jp-info-color3: var(--md-cyan-100);
/* Cell specific styles */
--jp-cell-padding: 5px;
--jp-cell-collapser-width: 8px;
--jp-cell-collapser-min-height: 20px;
--jp-cell-collapser-not-active-hover-opacity: 0.6;
--jp-cell-editor-background: var(--md-grey-100);
--jp-cell-editor-border-color: var(--md-grey-300);
--jp-cell-editor-box-shadow: inset 0 0 2px var(--md-blue-300);
--jp-cell-editor-active-background: var(--jp-layout-color0);
--jp-cell-editor-active-border-color: var(--jp-brand-color1);
--jp-cell-prompt-width: 64px;
--jp-cell-prompt-font-family: var(--jp-code-font-family-default);
--jp-cell-prompt-letter-spacing: 0;
--jp-cell-prompt-opacity: 1;
--jp-cell-prompt-not-active-opacity: 0.5;
--jp-cell-prompt-not-active-font-color: var(--md-grey-700);
/* A custom blend of MD grey and blue 600
* See https://meyerweb.com/eric/tools/color-blend/#546E7A:1E88E5:5:hex */
--jp-cell-inprompt-font-color: #307fc1;
/* A custom blend of MD grey and orange 600
* https://meyerweb.com/eric/tools/color-blend/#546E7A:F4511E:5:hex */
--jp-cell-outprompt-font-color: #bf5b3d;
/* Notebook specific styles */
--jp-notebook-padding: 10px;
--jp-notebook-select-background: var(--jp-layout-color1);
--jp-notebook-multiselected-color: var(--md-blue-50);
/* The scroll padding is calculated to fill enough space at the bottom of the
notebook to show one single-line cell (with appropriate padding) at the top
when the notebook is scrolled all the way to the bottom. We also subtract one
pixel so that no scrollbar appears if we have just one single-line cell in the
notebook. This padding is to enable a 'scroll past end' feature in a notebook.
*/
--jp-notebook-scroll-padding: calc(
100% - var(--jp-code-font-size) * var(--jp-code-line-height) -
var(--jp-code-padding) - var(--jp-cell-padding) - 1px
);
/* Rendermime styles */
--jp-rendermime-error-background: #fdd;
--jp-rendermime-table-row-background: var(--md-grey-100);
--jp-rendermime-table-row-hover-background: var(--md-light-blue-50);
/* Dialog specific styles */
--jp-dialog-background: rgba(0, 0, 0, 0.25);
/* Console specific styles */
--jp-console-padding: 10px;
/* Toolbar specific styles */
--jp-toolbar-border-color: var(--jp-border-color1);
--jp-toolbar-micro-height: 8px;
--jp-toolbar-background: var(--jp-layout-color1);
--jp-toolbar-box-shadow: 0 0 2px 0 rgba(0, 0, 0, 0.24);
--jp-toolbar-header-margin: 4px 4px 0 4px;
--jp-toolbar-active-background: var(--md-grey-300);
/* Statusbar specific styles */
--jp-statusbar-height: 24px;
/* Input field styles */
--jp-input-box-shadow: inset 0 0 2px var(--md-blue-300);
--jp-input-active-background: var(--jp-layout-color1);
--jp-input-hover-background: var(--jp-layout-color1);
--jp-input-background: var(--md-grey-100);
--jp-input-border-color: var(--jp-inverse-border-color);
--jp-input-active-border-color: var(--jp-brand-color1);
--jp-input-active-box-shadow-color: rgba(19, 124, 189, 0.3);
/* General editor styles */
--jp-editor-selected-background: #d9d9d9;
--jp-editor-selected-focused-background: #d7d4f0;
--jp-editor-cursor-color: var(--jp-ui-font-color0);
/* Code mirror specific styles */
--jp-mirror-editor-keyword-color: #008000;
--jp-mirror-editor-atom-color: #88f;
--jp-mirror-editor-number-color: #080;
--jp-mirror-editor-def-color: #00f;
--jp-mirror-editor-variable-color: var(--md-grey-900);
--jp-mirror-editor-variable-2-color: rgb(0, 54, 109);
--jp-mirror-editor-variable-3-color: #085;
--jp-mirror-editor-punctuation-color: #05a;
--jp-mirror-editor-property-color: #05a;
--jp-mirror-editor-operator-color: #a2f;
--jp-mirror-editor-comment-color: #408080;
--jp-mirror-editor-string-color: #ba2121;
--jp-mirror-editor-string-2-color: #708;
--jp-mirror-editor-meta-color: #a2f;
--jp-mirror-editor-qualifier-color: #555;
--jp-mirror-editor-builtin-color: #008000;
--jp-mirror-editor-bracket-color: #997;
--jp-mirror-editor-tag-color: #170;
--jp-mirror-editor-attribute-color: #00c;
--jp-mirror-editor-header-color: blue;
--jp-mirror-editor-quote-color: #090;
--jp-mirror-editor-link-color: #00c;
--jp-mirror-editor-error-color: #f00;
--jp-mirror-editor-hr-color: #999;
/*
RTC user specific colors.
These colors are used for the cursor, username in the editor,
and the icon of the user.
*/
--jp-collaborator-color1: #ffad8e;
--jp-collaborator-color2: #dac83d;
--jp-collaborator-color3: #72dd76;
--jp-collaborator-color4: #00e4d0;
--jp-collaborator-color5: #45d4ff;
--jp-collaborator-color6: #e2b1ff;
--jp-collaborator-color7: #ff9de6;
/* Vega extension styles */
--jp-vega-background: white;
/* Sidebar-related styles */
--jp-sidebar-min-width: 250px;
/* Search-related styles */
--jp-search-toggle-off-opacity: 0.5;
--jp-search-toggle-hover-opacity: 0.8;
--jp-search-toggle-on-opacity: 1;
--jp-search-selected-match-background-color: rgb(245, 200, 0);
--jp-search-selected-match-color: black;
--jp-search-unselected-match-background-color: var(
--jp-inverse-layout-color0
);
--jp-search-unselected-match-color: var(--jp-ui-inverse-font-color0);
/* Icon colors that work well with light or dark backgrounds */
--jp-icon-contrast-color0: var(--md-purple-600);
--jp-icon-contrast-color1: var(--md-green-600);
--jp-icon-contrast-color2: var(--md-pink-600);
--jp-icon-contrast-color3: var(--md-blue-600);
/* Button colors */
--jp-accept-color-normal: var(--md-blue-700);
--jp-accept-color-hover: var(--md-blue-800);
--jp-accept-color-active: var(--md-blue-900);
--jp-warn-color-normal: var(--md-red-700);
--jp-warn-color-hover: var(--md-red-800);
--jp-warn-color-active: var(--md-red-900);
--jp-reject-color-normal: var(--md-grey-600);
--jp-reject-color-hover: var(--md-grey-700);
--jp-reject-color-active: var(--md-grey-800);
/* File or activity icons and switch semantic variables */
--jp-jupyter-icon-color: #f37626;
--jp-notebook-icon-color: #f37626;
--jp-json-icon-color: var(--md-orange-700);
--jp-console-icon-background-color: var(--md-blue-700);
--jp-console-icon-color: white;
--jp-terminal-icon-background-color: var(--md-grey-800);
--jp-terminal-icon-color: var(--md-grey-200);
--jp-text-editor-icon-color: var(--md-grey-700);
--jp-inspector-icon-color: var(--md-grey-700);
--jp-switch-color: var(--md-grey-400);
--jp-switch-true-position-color: var(--md-orange-900);
}
</style>
<style type="text/css">
/* Force rendering true colors when outputing to pdf */
* {
-webkit-print-color-adjust: exact;
}
/* Misc */
a.anchor-link {
display: none;
}
/* Input area styling */
.jp-InputArea {
overflow: hidden;
}
.jp-InputArea-editor {
overflow: hidden;
}
.cm-editor.cm-s-jupyter .highlight pre {
/* weird, but --jp-code-padding defined to be 5px but 4px horizontal padding is hardcoded for pre.cm-line */
padding: var(--jp-code-padding) 4px;
margin: 0;
font-family: inherit;
font-size: inherit;
line-height: inherit;
color: inherit;
}
.jp-OutputArea-output pre {
line-height: inherit;
font-family: inherit;
}
.jp-RenderedText pre {
color: var(--jp-content-font-color1);
font-size: var(--jp-code-font-size);
}
/* Hiding the collapser by default */
.jp-Collapser {
display: none;
}
@page {
margin: 0.5in; /* Margin for each printed piece of paper */
}
@media print {
.jp-Cell-inputWrapper,
.jp-Cell-outputWrapper {
display: block;
}
}
</style>
<!-- Load mathjax -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS_CHTML-full,Safe"> </script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
init_mathjax = function() {
if (window.MathJax) {
// MathJax loaded
MathJax.Hub.Config({
TeX: {
equationNumbers: {
autoNumber: "AMS",
useLabelIds: true
}
},
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
processEscapes: true,
processEnvironments: true
},
displayAlign: 'center',
messageStyle: 'none',
CommonHTML: {
linebreaks: {
automatic: true
}
}
});
MathJax.Hub.Queue(["Typeset", MathJax.Hub]);
}
}
init_mathjax();
</script>
<!-- End of mathjax configuration --><script type="module">
document.addEventListener("DOMContentLoaded", async () => {
const diagrams = document.querySelectorAll(".jp-Mermaid > pre.mermaid");
// do not load mermaidjs if not needed
if (!diagrams.length) {
return;
}
const mermaid = (await import("https://cdnjs.cloudflare.com/ajax/libs/mermaid/10.7.0/mermaid.esm.min.mjs")).default;
const parser = new DOMParser();
mermaid.initialize({
maxTextSize: 100000,
maxEdges: 100000,
startOnLoad: false,
fontFamily: window
.getComputedStyle(document.body)
.getPropertyValue("--jp-ui-font-family"),
theme: document.querySelector("body[data-jp-theme-light='true']")
? "default"
: "dark",
});
let _nextMermaidId = 0;
function makeMermaidImage(svg) {
const img = document.createElement("img");
const doc = parser.parseFromString(svg, "image/svg+xml");
const svgEl = doc.querySelector("svg");
const { maxWidth } = svgEl?.style || {};
const firstTitle = doc.querySelector("title");
const firstDesc = doc.querySelector("desc");
img.setAttribute("src", `data:image/svg+xml,${encodeURIComponent(svg)}`);
if (maxWidth) {
img.width = parseInt(maxWidth);
}
if (firstTitle) {
img.setAttribute("alt", firstTitle.textContent);
}
if (firstDesc) {
const caption = document.createElement("figcaption");
caption.className = "sr-only";
caption.textContent = firstDesc.textContent;
return [img, caption];
}
return [img];
}
async function makeMermaidError(text) {
let errorMessage = "";
try {
await mermaid.parse(text);
} catch (err) {
errorMessage = `${err}`;
}
const result = document.createElement("details");
result.className = 'jp-RenderedMermaid-Details';
const summary = document.createElement("summary");
summary.className = 'jp-RenderedMermaid-Summary';
const pre = document.createElement("pre");
const code = document.createElement("code");
code.innerText = text;
pre.appendChild(code);
summary.appendChild(pre);
result.appendChild(summary);
const warning = document.createElement("pre");
warning.innerText = errorMessage;
result.appendChild(warning);
return [result];
}
async function renderOneMarmaid(src) {
const id = `jp-mermaid-${_nextMermaidId++}`;
const parent = src.parentNode;
let raw = src.textContent.trim();
const el = document.createElement("div");
el.style.visibility = "hidden";
document.body.appendChild(el);
let results = null;
let output = null;
try {
let { svg } = await mermaid.render(id, raw, el);
svg = cleanMermaidSvg(svg);
results = makeMermaidImage(svg);
output = document.createElement("figure");
results.map(output.appendChild, output);
} catch (err) {
parent.classList.add("jp-mod-warning");
results = await makeMermaidError(raw);
output = results[0];
} finally {
el.remove();
}
parent.classList.add("jp-RenderedMermaid");
parent.appendChild(output);
}
/**
* Post-process to ensure mermaid diagrams contain only valid SVG and XHTML.
*/
function cleanMermaidSvg(svg) {
return svg.replace(RE_VOID_ELEMENT, replaceVoidElement);
}
/**
* A regular expression for all void elements, which may include attributes and
* a slash.
*
* @see https://developer.mozilla.org/en-US/docs/Glossary/Void_element
*
* Of these, only `<br>` is generated by Mermaid in place of `\n`,
* but _any_ "malformed" tag will break the SVG rendering entirely.
*/
const RE_VOID_ELEMENT =
/<\s*(area|base|br|col|embed|hr|img|input|link|meta|param|source|track|wbr)\s*([^>]*?)\s*>/gi;
/**
* Ensure a void element is closed with a slash, preserving any attributes.
*/
function replaceVoidElement(match, tag, rest) {
rest = rest.trim();
if (!rest.endsWith('/')) {
rest = `${rest} /`;
}
return `<${tag} ${rest}>`;
}
void Promise.all([...diagrams].map(renderOneMarmaid));
});
</script>
<style>
.jp-Mermaid:not(.jp-RenderedMermaid) {
display: none;
}
.jp-RenderedMermaid {
overflow: auto;
display: flex;
}
.jp-RenderedMermaid.jp-mod-warning {
width: auto;
padding: 0.5em;
margin-top: 0.5em;
border: var(--jp-border-width) solid var(--jp-warn-color2);
border-radius: var(--jp-border-radius);
color: var(--jp-ui-font-color1);
font-size: var(--jp-ui-font-size1);
white-space: pre-wrap;
word-wrap: break-word;
}
.jp-RenderedMermaid figure {
margin: 0;
overflow: auto;
max-width: 100%;
}
.jp-RenderedMermaid img {
max-width: 100%;
}
.jp-RenderedMermaid-Details > pre {
margin-top: 1em;
}
.jp-RenderedMermaid-Summary {
color: var(--jp-warn-color2);
}
.jp-RenderedMermaid:not(.jp-mod-warning) pre {
display: none;
}
.jp-RenderedMermaid-Summary > pre {
display: inline-block;
white-space: normal;
}
</style>
<!-- End of mermaid configuration --></head>
<body class="jp-Notebook" data-jp-theme-light="true" data-jp-theme-name="JupyterLab Light">
<main>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=48dd2795">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<h1 id="Tutorial:-Unstructured-convolutional-autoencoder-via-continuous-convolution">Tutorial: Unstructured convolutional autoencoder via continuous convolution<a class="anchor-link" href="#Tutorial:-Unstructured-convolutional-autoencoder-via-continuous-convolution">¶</a></h1><p><a href="https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial4/tutorial.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"/></a></p>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=25770254">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>In this tutorial, we will show how to use the Continuous Convolutional Filter, and how to build common Deep Learning architectures with it. The implementation of the filter follows the original work <a href="https://arxiv.org/abs/2210.13416"><em>A Continuous Convolutional Trainable Filter for Modelling Unstructured Data</em></a>.</p>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=80e8bfac">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>First of all we import the modules needed for the tutorial:</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=5ae7c0e8">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1">## routine needed to run the notebook on Google Colab</span>
<span class="k">try</span><span class="p">:</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">google.colab</span>
<span class="n">IN_COLAB</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">except</span><span class="p">:</span>
<span class="n">IN_COLAB</span> <span class="o">=</span> <span class="kc">False</span>
<span class="k">if</span> <span class="n">IN_COLAB</span><span class="p">:</span>
<span class="o">!</span>pip<span class="w"> </span>install<span class="w"> </span><span class="s2">"pina-mathlab"</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">torch</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">matplotlib.pyplot</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">plt</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">torchvision</span> <span class="c1"># for MNIST dataset</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">warnings</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pina</span><span class="w"> </span><span class="kn">import</span> <span class="n">Trainer</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pina.problem.zoo</span><span class="w"> </span><span class="kn">import</span> <span class="n">SupervisedProblem</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pina.solver</span><span class="w"> </span><span class="kn">import</span> <span class="n">SupervisedSolver</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pina.trainer</span><span class="w"> </span><span class="kn">import</span> <span class="n">Trainer</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pina.model.block</span><span class="w"> </span><span class="kn">import</span> <span class="n">ContinuousConvBlock</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pina.model</span><span class="w"> </span><span class="kn">import</span> <span class="n">FeedForward</span> <span class="c1"># for building AE and MNIST classification</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">filterwarnings</span><span class="p">(</span><span class="s2">"ignore"</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4094758f">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>The tutorial is structured as follow:</p>
<ul>
<li><a href="#continuous-filter-background">Continuous filter background</a>: understand how the convolutional filter works and how to use it.</li>
<li><a href="#building-a-mnist-classifier">Building a MNIST Classifier</a>: show how to build a simple classifier using the MNIST dataset and how to combine a continuous convolutional layer with a feedforward neural network.</li>
<li><a href="#building-a-continuous-convolutional-autoencoder">Building a Continuous Convolutional Autoencoder</a>: show how to use the continuous filter to work with unstructured data for autoencoding and up-sampling.</li>
</ul>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=87327478">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<h2 id="Continuous-filter-background">Continuous filter background<a class="anchor-link" href="#Continuous-filter-background">¶</a></h2>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=7f1aa4ef">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>As reported by the authors in the original paper: in contrast to discrete convolution, continuous convolution is mathematically defined as:</p>
<p>$$
\mathcal{I}_{\rm{out}}(\mathbf{x}) = \int_{\mathcal{X}} \mathcal{I}(\mathbf{x} + \mathbf{\tau}) \cdot \mathcal{K}(\mathbf{\tau}) d\mathbf{\tau},
$$
where $\mathcal{K} : \mathcal{X} \rightarrow \mathbb{R}$ is the <em>continuous filter</em> function, and $\mathcal{I} : \Omega \subset \mathbb{R}^N \rightarrow \mathbb{R}$ is the input function. The continuous filter function is approximated using a FeedForward Neural Network, thus trainable during the training phase. The way in which the integral is approximated can be different, currently on <strong>PINA</strong> we approximate it using a simple sum, as suggested by the authors. Thus, given $\{\mathbf{x}_i\}_{i=1}^{n}$ points in $\mathbb{R}^N$ of the input function mapped on the $\mathcal{X}$ filter domain, we approximate the above equation as:
$$
\mathcal{I}_{\rm{out}}(\mathbf{\tilde{x}}_i) = \sum_{{\mathbf{x}_i}\in\mathcal{X}} \mathcal{I}(\mathbf{x}_i + \mathbf{\tau}) \cdot \mathcal{K}(\mathbf{x}_i),
$$
where $\mathbf{\tau} \in \mathcal{S}$, with $\mathcal{S}$ the set of available strides, corresponds to the current stride position of the filter, and $\mathbf{\tilde{x}}_i$ points are obtained by taking the centroid of the filter position mapped on the $\Omega$ domain.</p>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=a2ea9c78">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>We will now try to pratically see how to work with the filter. From the above definition we see that what is needed is:</p>
<ol>
<li>A domain and a function defined on that domain (the input)</li>
<li>A stride, corresponding to the positions where the filter needs to be $\rightarrow$ <code>stride</code> variable in <code>ContinuousConv</code></li>
<li>The filter rectangular domain $\rightarrow$ <code>filter_dim</code> variable in <code>ContinuousConv</code></li>
</ol>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=ac896875">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<h3 id="Input-function">Input function<a class="anchor-link" href="#Input-function">¶</a></h3><p>The input function for the continuous filter is defined as a tensor of shape: $$[B \times N_{in} \times N \times D]$$ where $B$ is the batch_size, $N_{in}$ is the number of input fields, $N$ the number of points in the mesh, $D$ the dimension of the problem. In particular:</p>
<ul>
<li>$D$ is the number of spatial variables + 1. The last column must contain the field value. For example for 2D problems $D=3$ and the tensor will be something like <code>[first coordinate, second coordinate, field value]</code></li>
<li>$N_{in}$ represents the number of vectorial function presented. For example a vectorial function $f = [f_1, f_2]$ will have $N_{in}=2$</li>
</ul>
<p>Let's see an example to clear the ideas. We will be verbose to explain in details the input form. We wish to create the function:
$$
f(x, y) = [\sin(\pi x) \sin(\pi y), -\sin(\pi x) \sin(\pi y)] \quad (x,y)\in[0,1]\times[0,1]
$$</p>
<p>using a batch size equal to 1.</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=447bb133">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># batch size fixed to 1</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="mi">1</span>
<span class="c1"># points in the mesh fixed to 200</span>
<span class="n">N</span> <span class="o">=</span> <span class="mi">200</span>
<span class="c1"># vectorial 2 dimensional function, number_input_fields=2</span>
<span class="n">number_input_fields</span> <span class="o">=</span> <span class="mi">2</span>
<span class="c1"># 2 dimensional spatial variables, D = 2 + 1 = 3</span>
<span class="n">D</span> <span class="o">=</span> <span class="mi">3</span>
<span class="c1"># create the function f domain as random 2d points in [0, 1]</span>
<span class="n">domain</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">number_input_fields</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">D</span> <span class="o">-</span> <span class="mi">1</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Domain has shape: </span><span class="si">{</span><span class="n">domain</span><span class="o">.</span><span class="n">shape</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
<span class="c1"># create the functions</span>
<span class="n">pi</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">acos</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="o">-</span><span class="mf">1.0</span><span class="p">]))</span> <span class="c1"># pi value</span>
<span class="n">f1</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">pi</span> <span class="o">*</span> <span class="n">domain</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="mi">0</span><span class="p">])</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">pi</span> <span class="o">*</span> <span class="n">domain</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="mi">1</span><span class="p">])</span>
<span class="n">f2</span> <span class="o">=</span> <span class="o">-</span><span class="n">torch</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">pi</span> <span class="o">*</span> <span class="n">domain</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">,</span> <span class="p">:,</span> <span class="mi">0</span><span class="p">])</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">pi</span> <span class="o">*</span> <span class="n">domain</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">,</span> <span class="p">:,</span> <span class="mi">1</span><span class="p">])</span>
<span class="c1"># stacking the input domain and field values</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">number_input_fields</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">D</span><span class="p">))</span>
<span class="n">data</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">domain</span> <span class="c1"># copy the domain</span>
<span class="n">data</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">f1</span> <span class="c1"># copy first field value</span>
<span class="n">data</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">,</span> <span class="p">:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">f1</span> <span class="c1"># copy second field value</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Filter input data has shape: </span><span class="si">{</span><span class="n">data</span><span class="o">.</span><span class="n">shape</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
</div>
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>Domain has shape: torch.Size([1, 2, 200, 2])
Filter input data has shape: torch.Size([1, 2, 200, 3])
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=e93d6afd">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<h3 id="Stride">Stride<a class="anchor-link" href="#Stride">¶</a></h3><p>The stride is passed as a dictionary <code>stride</code> which tells the filter where to go. Here is an example for the $[0,1]\times[0,5]$ domain:</p>
<div class="highlight"><pre><span></span><span class="c1"># stride definition</span>
<span class="n">stride</span> <span class="o">=</span> <span class="p">{</span><span class="s2">"domain"</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">],</span>
<span class="s2">"start"</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="s2">"jump"</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">],</span>
<span class="s2">"direction"</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="p">}</span>
</pre></div>
<p>This tells the filter:</p>
<ol>
<li><code>domain</code>: square domain (the only implemented) $[0,1]\times[0,5]$. The minimum value is always zero, while the maximum is specified by the user</li>
<li><code>start</code>: start position of the filter, coordinate $(0, 0)$</li>
<li><code>jump</code>: the jumps of the centroid of the filter to the next position $(0.1, 0.3)$</li>
<li><code>direction</code>: the directions of the jump, with <code>1 = right</code>, <code>0 = no jump</code>, <code>-1 = left</code> with respect to the current position</li>
</ol>
<p><strong>Note</strong></p>
<p>We are planning to release the possibility to directly pass a list of possible strides!</p>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=71c13ef2">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<h3 id="Filter-definition">Filter definition<a class="anchor-link" href="#Filter-definition">¶</a></h3><p>Having defined all the previous blocks, we are now able to construct the continuous filter.</p>
<p>Suppose we would like to get an output with only one field, and let us fix the filter dimension to be $[0.1, 0.1]$.</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=b78c08b8">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># filter dim</span>
<span class="n">filter_dim</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]</span>
<span class="c1"># stride</span>
<span class="n">stride</span> <span class="o">=</span> <span class="p">{</span>
<span class="s2">"domain"</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="s2">"start"</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="s2">"jump"</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.08</span><span class="p">,</span> <span class="mf">0.08</span><span class="p">],</span>
<span class="s2">"direction"</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="p">}</span>
<span class="c1"># creating the filter</span>
<span class="n">cConv</span> <span class="o">=</span> <span class="n">ContinuousConvBlock</span><span class="p">(</span>
<span class="n">input_numb_field</span><span class="o">=</span><span class="n">number_input_fields</span><span class="p">,</span>
<span class="n">output_numb_field</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">filter_dim</span><span class="o">=</span><span class="n">filter_dim</span><span class="p">,</span>
<span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=49ccc992">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>That's it! In just one line of code we have created the continuous convolutional filter. By default the <code>pina.model.FeedForward</code> neural network is intitialised, more on the <a href="https://mathlab.github.io/PINA/_rst/fnn.html">documentation</a>. In case the mesh doesn't change during training we can set the <code>optimize</code> flag equals to <code>True</code>, to exploit optimizations for finding the points to convolve.</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=0fbe67dc">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># creating the filter + optimization</span>
<span class="n">cConv</span> <span class="o">=</span> <span class="n">ContinuousConvBlock</span><span class="p">(</span>
<span class="n">input_numb_field</span><span class="o">=</span><span class="n">number_input_fields</span><span class="p">,</span>
<span class="n">output_numb_field</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">filter_dim</span><span class="o">=</span><span class="n">filter_dim</span><span class="p">,</span>
<span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span>
<span class="n">optimize</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=f99c290e">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>Let's try to do a forward pass:</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=07580a3c">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Filter input data has shape: </span><span class="si">{</span><span class="n">data</span><span class="o">.</span><span class="n">shape</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
<span class="c1"># input to the filter</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">cConv</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Filter output data has shape: </span><span class="si">{</span><span class="n">output</span><span class="o">.</span><span class="n">shape</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
</div>
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>Filter input data has shape: torch.Size([1, 2, 200, 3])
Filter output data has shape: torch.Size([1, 1, 169, 3])
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=886cf50f">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>If we don't want to use the default <code>FeedForward</code> neural network, we can pass a specified torch model in the <code>model</code> keyword as follow:</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=0e234c69">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="k">class</span><span class="w"> </span><span class="nc">SimpleKernel</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">model</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span>
<span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(),</span>
<span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span>
<span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(),</span>
<span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">cConv</span> <span class="o">=</span> <span class="n">ContinuousConvBlock</span><span class="p">(</span>
<span class="n">input_numb_field</span><span class="o">=</span><span class="n">number_input_fields</span><span class="p">,</span>
<span class="n">output_numb_field</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">filter_dim</span><span class="o">=</span><span class="n">filter_dim</span><span class="p">,</span>
<span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span>
<span class="n">optimize</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">model</span><span class="o">=</span><span class="n">SimpleKernel</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=2d4318ab">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>Notice that we pass the class and not an already built object!</p>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=254e8c8d">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<h2 id="Building-a-MNIST-Classifier">Building a MNIST Classifier<a class="anchor-link" href="#Building-a-MNIST-Classifier">¶</a></h2><p>Let's see how we can build a MNIST classifier using a continuous convolutional filter. We will use the MNIST dataset from PyTorch. In order to keep small training times we use only 6000 samples for training and 1000 samples for testing.</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=6d816e7a">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="kn">from</span><span class="w"> </span><span class="nn">torch.utils.data</span><span class="w"> </span><span class="kn">import</span> <span class="n">DataLoader</span><span class="p">,</span> <span class="n">SubsetRandomSampler</span>
<span class="n">numb_training</span> <span class="o">=</span> <span class="mi">6000</span> <span class="c1"># get just 6000 images for training</span>
<span class="n">numb_testing</span> <span class="o">=</span> <span class="mi">1000</span> <span class="c1"># get just 1000 images for training</span>
<span class="n">seed</span> <span class="o">=</span> <span class="mi">111</span> <span class="c1"># for reproducibility</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="mi">8</span> <span class="c1"># setting batch size</span>
<span class="c1"># setting the seed</span>
<span class="n">torch</span><span class="o">.</span><span class="n">manual_seed</span><span class="p">(</span><span class="n">seed</span><span class="p">)</span>
<span class="c1"># downloading the dataset</span>
<span class="n">train_data</span> <span class="o">=</span> <span class="n">torchvision</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">MNIST</span><span class="p">(</span>
<span class="s2">"./data/"</span><span class="p">,</span>
<span class="n">download</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">train</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">transform</span><span class="o">=</span><span class="n">torchvision</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">(</span>
<span class="p">[</span>
<span class="n">torchvision</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
<span class="n">torchvision</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">Normalize</span><span class="p">((</span><span class="mf">0.1307</span><span class="p">,),</span> <span class="p">(</span><span class="mf">0.3081</span><span class="p">,)),</span>
<span class="p">]</span>
<span class="p">),</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
</div>
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Failed to download (trying next):
HTTP Error 404: Not Found
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz to ./data/MNIST/raw/train-images-idx3-ubyte.gz
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre> 0%| | 0/9912422 [00:00&lt;?, ?it/s]</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre> 19%|█▉ | 1867776/9912422 [00:00&lt;00:00, 18672613.61it/s]</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre> 100%|██████████| 9912422/9912422 [00:00&lt;00:00, 63653375.21it/s]</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre>
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>Extracting ./data/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/raw
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Failed to download (trying next):
HTTP Error 404: Not Found
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz to ./data/MNIST/raw/train-labels-idx1-ubyte.gz
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre> 0%| | 0/28881 [00:00&lt;?, ?it/s]</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre> 100%|██████████| 28881/28881 [00:00&lt;00:00, 1819373.30it/s]</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre>
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>Extracting ./data/MNIST/raw/train-labels-idx1-ubyte.gz to ./data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Failed to download (trying next):
HTTP Error 404: Not Found
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw/t10k-images-idx3-ubyte.gz
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre> 0%| | 0/1648877 [00:00&lt;?, ?it/s]</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre> 97%|█████████▋| 1605632/1648877 [00:00&lt;00:00, 16049868.37it/s]</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre> 100%|██████████| 1648877/1648877 [00:00&lt;00:00, 16160172.81it/s]</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre>
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>Extracting ./data/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Failed to download (trying next):
HTTP Error 404: Not Found
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre> 0%| | 0/4542 [00:00&lt;?, ?it/s]</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre> 100%|██████████| 4542/4542 [00:00&lt;00:00, 3231641.86it/s]</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>Extracting ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre>
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=7f076010">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>Let's now build a simple classifier. The MNIST dataset is composed by vectors of shape <code>[batch, 1, 28, 28]</code>, but we can image them as one field functions where the pixels $ij$ are the coordinate $x=i, y=j$ in a $[0, 27]\times[0,27]$ domain, and the pixels values are the field values. We just need a function to transform the regular tensor in a tensor compatible for the continuous filter:</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=a872fb2d">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span><span class="w"> </span><span class="nf">transform_input</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">dim_grid</span> <span class="o">=</span> <span class="nb">tuple</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[:</span><span class="o">-</span><span class="mi">3</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="c1"># creating the n dimensional mesh grid for a single channel image</span>
<span class="n">values_mesh</span> <span class="o">=</span> <span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">dim</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span> <span class="k">for</span> <span class="n">dim</span> <span class="ow">in</span> <span class="n">dim_grid</span><span class="p">]</span>
<span class="n">mesh</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">values_mesh</span><span class="p">)</span>
<span class="n">coordinates_mesh</span> <span class="o">=</span> <span class="p">[</span><span class="n">m</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">device</span><span class="p">)</span> <span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">mesh</span><span class="p">]</span>
<span class="n">coordinates</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">(</span><span class="n">coordinates_mesh</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="o">.</span><span class="n">repeat</span><span class="p">((</span><span class="n">batch_size</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">coordinates</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)),</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=850b45c4">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>We can now build a simple classifier! We will use just one convolutional filter followed by a feedforward neural network</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=889c1592">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [9]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># setting the seed</span>
<span class="n">torch</span><span class="o">.</span><span class="n">manual_seed</span><span class="p">(</span><span class="n">seed</span><span class="p">)</span>
<span class="k">class</span><span class="w"> </span><span class="nc">ContinuousClassifier</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="c1"># number of classes for classification</span>
<span class="n">numb_class</span> <span class="o">=</span> <span class="mi">10</span>
<span class="c1"># convolutional block</span>
<span class="bp">self</span><span class="o">.</span><span class="n">convolution</span> <span class="o">=</span> <span class="n">ContinuousConvBlock</span><span class="p">(</span>
<span class="n">input_numb_field</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">output_numb_field</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span>
<span class="n">stride</span><span class="o">=</span><span class="p">{</span>
<span class="s2">"domain"</span><span class="p">:</span> <span class="p">[</span><span class="mi">27</span><span class="p">,</span> <span class="mi">27</span><span class="p">],</span>
<span class="s2">"start"</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="s2">"jumps"</span><span class="p">:</span> <span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span>
<span class="s2">"direction"</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span>
<span class="p">},</span>
<span class="n">filter_dim</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span>
<span class="n">optimize</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="p">)</span>
<span class="c1"># feedforward net</span>
<span class="bp">self</span><span class="o">.</span><span class="n">nn</span> <span class="o">=</span> <span class="n">FeedForward</span><span class="p">(</span>
<span class="n">input_dimensions</span><span class="o">=</span><span class="mi">196</span><span class="p">,</span>
<span class="n">output_dimensions</span><span class="o">=</span><span class="n">numb_class</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="p">[</span><span class="mi">120</span><span class="p">,</span> <span class="mi">64</span><span class="p">],</span>
<span class="n">func</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="c1"># transform input + convolution</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">transform_input</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">convolution</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># feed forward classification</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">nn</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="mi">1</span><span class="p">))</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4374c15c">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>We now aim to solve the classification problem. For this we will use the <code>SupervisedSolver</code> and the <code>SupervisedProblem</code>. The input of the supervised problems are the images, while the output the corresponding class.</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=0446afe0">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [10]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># setting the problem</span>
<span class="n">problem</span> <span class="o">=</span> <span class="n">SupervisedProblem</span><span class="p">(</span>
<span class="n">input_</span><span class="o">=</span><span class="n">train_data</span><span class="o">.</span><span class="n">train_data</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="c1"># adding channel dimension</span>
<span class="n">output_</span><span class="o">=</span><span class="n">train_data</span><span class="o">.</span><span class="n">train_labels</span><span class="p">,</span>
<span class="p">)</span>
<span class="c1"># setting the solver</span>
<span class="n">solver</span> <span class="o">=</span> <span class="n">SupervisedSolver</span><span class="p">(</span>
<span class="n">problem</span><span class="o">=</span><span class="n">problem</span><span class="p">,</span>
<span class="n">model</span><span class="o">=</span><span class="n">ContinuousClassifier</span><span class="p">(),</span>
<span class="n">loss</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">CrossEntropyLoss</span><span class="p">(),</span>
<span class="n">use_lt</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="p">)</span>
<span class="c1"># setting the trainer</span>
<span class="n">trainer</span> <span class="o">=</span> <span class="n">Trainer</span><span class="p">(</span>
<span class="n">solver</span><span class="o">=</span><span class="n">solver</span><span class="p">,</span>
<span class="n">max_epochs</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">accelerator</span><span class="o">=</span><span class="s2">"cpu"</span><span class="p">,</span>
<span class="n">enable_model_summary</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">train_size</span><span class="o">=</span><span class="mf">0.7</span><span class="p">,</span>
<span class="n">val_size</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span>
<span class="n">test_size</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">trainer</span><span class="o">.</span><span class="n">train</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
</div>
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre>GPU available: False, used: False
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre>TPU available: False, using: 0 TPU cores
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre>HPU available: False, using: 0 HPUs
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre>Missing logger folder: /home/runner/work/PINA/PINA/tutorials/tutorial4/lightning_logs
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jupyter-widgets jp-OutputArea-output" id="d68fdffa-8200-4011-a6f1-29c93f0d5204" tabindex="0">
<script type="text/javascript">
var element = document.getElementById('d68fdffa-8200-4011-a6f1-29c93f0d5204');
</script>
<script type="application/vnd.jupyter.widget-view+json">
{"version_major": 2, "version_minor": 0, "model_id": "26ad36fde42e48bda871f3180f8b564d"}
</script>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jupyter-widgets jp-OutputArea-output" id="69c54df5-5b8a-4c15-bf59-ba0911f8b7f5" tabindex="0">
<script type="text/javascript">
var element = document.getElementById('69c54df5-5b8a-4c15-bf59-ba0911f8b7f5');
</script>
<script type="application/vnd.jupyter.widget-view+json">
{"version_major": 2, "version_minor": 0, "model_id": "c240c285cd5b40de82a3963b213307a1"}
</script>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jupyter-widgets jp-OutputArea-output" id="5f9486e7-e49e-4f63-90ae-0f69c93295de" tabindex="0">
<script type="text/javascript">
var element = document.getElementById('5f9486e7-e49e-4f63-90ae-0f69c93295de');
</script>
<script type="application/vnd.jupyter.widget-view+json">
{"version_major": 2, "version_minor": 0, "model_id": "e310c7f76ee14481add83f009ea32775"}
</script>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre>`Trainer.fit` stopped: `max_epochs=1` reached.
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=47fa3d0e">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>Let's see the performance on the test set!</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=b54638c1">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [11]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="n">correct</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">total</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">trainer</span><span class="o">.</span><span class="n">data_module</span><span class="o">.</span><span class="n">setup</span><span class="p">(</span><span class="s2">"test"</span><span class="p">)</span>
<span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span>
<span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">trainer</span><span class="o">.</span><span class="n">data_module</span><span class="o">.</span><span class="n">test_dataloader</span><span class="p">():</span>
<span class="n">test_data</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="s2">"data"</span><span class="p">]</span>
<span class="n">images</span><span class="p">,</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">test_data</span><span class="p">[</span><span class="s2">"input"</span><span class="p">],</span> <span class="n">test_data</span><span class="p">[</span><span class="s2">"target"</span><span class="p">]</span>
<span class="c1"># calculate outputs by running images through the network</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="n">solver</span><span class="p">(</span><span class="n">images</span><span class="p">)</span>
<span class="c1"># the class with the highest energy is what we choose as prediction</span>
<span class="n">_</span><span class="p">,</span> <span class="n">predicted</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">outputs</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">total</span> <span class="o">+=</span> <span class="n">labels</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">correct</span> <span class="o">+=</span> <span class="p">(</span><span class="n">predicted</span> <span class="o">==</span> <span class="n">labels</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Accuracy of the network on the test images: </span><span class="si">{</span><span class="p">(</span><span class="n">correct</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="n">total</span><span class="p">)</span><span class="si">:</span><span class="s2">.3%</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
</div>
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>Accuracy of the network on the test images: 81.550%
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=25cf2878">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>As we can see we have very good performance for having trained only for 1 epoch! Nevertheless, we are still using structured data... Let's see how we can build an autoencoder for unstructured data now.</p>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=3ce758e9">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<h2 id="Building-a-Continuous-Convolutional-Autoencoder">Building a Continuous Convolutional Autoencoder<a class="anchor-link" href="#Building-a-Continuous-Convolutional-Autoencoder">¶</a></h2><p>Just as toy problem, we will now build an autoencoder for the following function $f(x,y)=\sin(\pi x)\sin(\pi y)$ on the unit circle domain centered in $(0.5, 0.5)$. We will also see the ability to up-sample (once trained) the results without retraining. Let's first create the input and visualize it, we will use firstly a mesh of $100$ points.</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=6ca0e929">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [12]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># create inputs</span>
<span class="k">def</span><span class="w"> </span><span class="nf">circle_grid</span><span class="p">(</span><span class="n">N</span><span class="o">=</span><span class="mi">100</span><span class="p">):</span>
<span class="w"> </span><span class="sd">"""Generate points withing a unit 2D circle centered in (0.5, 0.5)</span>
<span class="sd"> :param N: number of points</span>
<span class="sd"> :type N: float</span>
<span class="sd"> :return: [x, y] array of points</span>
<span class="sd"> :rtype: torch.tensor</span>
<span class="sd"> """</span>
<span class="n">PI</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">acos</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">1</span><span class="p">))</span><span class="o">.</span><span class="n">item</span><span class="p">()</span> <span class="o">*</span> <span class="mi">2</span>
<span class="n">R</span> <span class="o">=</span> <span class="mf">0.5</span>
<span class="n">centerX</span> <span class="o">=</span> <span class="mf">0.5</span>
<span class="n">centerY</span> <span class="o">=</span> <span class="mf">0.5</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">R</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">N</span><span class="p">))</span>
<span class="n">theta</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">N</span><span class="p">)</span> <span class="o">*</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">PI</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">centerX</span> <span class="o">+</span> <span class="n">r</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">theta</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">centerY</span> <span class="o">+</span> <span class="n">r</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">theta</span><span class="p">)</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">([</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">])</span><span class="o">.</span><span class="n">T</span>
<span class="c1"># create the grid</span>
<span class="n">grid</span> <span class="o">=</span> <span class="n">circle_grid</span><span class="p">(</span><span class="mi">500</span><span class="p">)</span>
<span class="c1"># create input</span>
<span class="n">input_data</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">grid</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">input_data</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">grid</span>
<span class="n">input_data</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">pi</span> <span class="o">*</span> <span class="n">grid</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">])</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span>
<span class="n">pi</span> <span class="o">*</span> <span class="n">grid</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]</span>
<span class="p">)</span>
<span class="c1"># visualize data</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Training sample with 500 points"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">grid</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">grid</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">input_data</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
</div>
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
<img alt="No description has been provided for this image" class="" src=""/>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=ab6f5987">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>Let's now build a simple autoencoder using the continuous convolutional filter. The data is clearly unstructured and a simple convolutional filter might not work without projecting or interpolating first. Let's first build and <code>Encoder</code> and <code>Decoder</code> class, and then a <code>Autoencoder</code> class that contains both.</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=13e8ae0e">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [13]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="k">class</span><span class="w"> </span><span class="nc">Encoder</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_dimension</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="c1"># convolutional block</span>
<span class="bp">self</span><span class="o">.</span><span class="n">convolution</span> <span class="o">=</span> <span class="n">ContinuousConvBlock</span><span class="p">(</span>
<span class="n">input_numb_field</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">output_numb_field</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
<span class="n">stride</span><span class="o">=</span><span class="p">{</span>
<span class="s2">"domain"</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="s2">"start"</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="s2">"jumps"</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">],</span>
<span class="s2">"direction"</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span>
<span class="p">},</span>
<span class="n">filter_dim</span><span class="o">=</span><span class="p">[</span><span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">],</span>
<span class="n">optimize</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="p">)</span>
<span class="c1"># feedforward net</span>
<span class="bp">self</span><span class="o">.</span><span class="n">nn</span> <span class="o">=</span> <span class="n">FeedForward</span><span class="p">(</span>
<span class="n">input_dimensions</span><span class="o">=</span><span class="mi">400</span><span class="p">,</span>
<span class="n">output_dimensions</span><span class="o">=</span><span class="n">hidden_dimension</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="p">[</span><span class="mi">240</span><span class="p">,</span> <span class="mi">120</span><span class="p">],</span>
<span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="c1"># convolution</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">convolution</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># feed forward pass</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">nn</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="k">class</span><span class="w"> </span><span class="nc">Decoder</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_dimension</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="c1"># convolutional block</span>
<span class="bp">self</span><span class="o">.</span><span class="n">convolution</span> <span class="o">=</span> <span class="n">ContinuousConvBlock</span><span class="p">(</span>
<span class="n">input_numb_field</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
<span class="n">output_numb_field</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">stride</span><span class="o">=</span><span class="p">{</span>
<span class="s2">"domain"</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="s2">"start"</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="s2">"jumps"</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">],</span>
<span class="s2">"direction"</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span>
<span class="p">},</span>
<span class="n">filter_dim</span><span class="o">=</span><span class="p">[</span><span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">],</span>
<span class="n">optimize</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="p">)</span>
<span class="c1"># feedforward net</span>
<span class="bp">self</span><span class="o">.</span><span class="n">nn</span> <span class="o">=</span> <span class="n">FeedForward</span><span class="p">(</span>
<span class="n">input_dimensions</span><span class="o">=</span><span class="n">hidden_dimension</span><span class="p">,</span>
<span class="n">output_dimensions</span><span class="o">=</span><span class="mi">400</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="p">[</span><span class="mi">120</span><span class="p">,</span> <span class="mi">240</span><span class="p">],</span>
<span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">weights</span><span class="p">,</span> <span class="n">grid</span><span class="p">):</span>
<span class="c1"># feed forward pass</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">nn</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span>
<span class="c1"># transpose convolution</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">convolution</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">grid</span><span class="p">))</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=eb097e34">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>Very good! Notice that in the <code>Decoder</code> class in the <code>forward</code> pass we have used the <code>.transpose()</code> method of the <code>ContinuousConvolution</code> class. This method accepts the <code>weights</code> for upsampling and the <code>grid</code> on where to upsample. Let's now build the autoencoder! We set the hidden dimension in the <code>hidden_dimension</code> variable. We apply the sigmoid on the output since the field value is between $[0, 1]$.</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=a4db89a7">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [14]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="k">class</span><span class="w"> </span><span class="nc">Autoencoder</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_dimension</span><span class="o">=</span><span class="mi">10</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">encoder</span> <span class="o">=</span> <span class="n">Encoder</span><span class="p">(</span><span class="n">hidden_dimension</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">decoder</span> <span class="o">=</span> <span class="n">Decoder</span><span class="p">(</span><span class="n">hidden_dimension</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="c1"># saving grid for later upsampling</span>
<span class="n">grid</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span>
<span class="c1"># encoder</span>
<span class="n">weights</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">encoder</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># decoder</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">decoder</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">grid</span><span class="p">)</span>
<span class="k">return</span> <span class="n">out</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=2df482a7">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>Let's now train the autoencoder, minimizing the mean square error loss and optimizing using Adam. We use the <code>SupervisedSolver</code> as solver, and the problem is a simple problem created by inheriting from <code>AbstractProblem</code>. It takes approximately two minutes to train on CPU.</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=700a7cf3">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [15]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># define the problem</span>
<span class="n">problem</span> <span class="o">=</span> <span class="n">SupervisedProblem</span><span class="p">(</span><span class="n">input_data</span><span class="p">,</span> <span class="n">input_data</span><span class="p">)</span>
<span class="c1"># define the solver</span>
<span class="n">solver</span> <span class="o">=</span> <span class="n">SupervisedSolver</span><span class="p">(</span>
<span class="n">problem</span><span class="o">=</span><span class="n">problem</span><span class="p">,</span>
<span class="n">model</span><span class="o">=</span><span class="n">Autoencoder</span><span class="p">(),</span>
<span class="n">loss</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">MSELoss</span><span class="p">(),</span>
<span class="n">use_lt</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="p">)</span>
<span class="c1"># train</span>
<span class="n">trainer</span> <span class="o">=</span> <span class="n">Trainer</span><span class="p">(</span>
<span class="n">solver</span><span class="p">,</span>
<span class="n">max_epochs</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
<span class="n">accelerator</span><span class="o">=</span><span class="s2">"cpu"</span><span class="p">,</span>
<span class="n">enable_model_summary</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="c1"># we train on CPU and avoid model summary at beginning of training (optional)</span>
<span class="n">train_size</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="n">val_size</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span>
<span class="n">test_size</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">trainer</span><span class="o">.</span><span class="n">train</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
</div>
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre>GPU available: False, used: False
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre>TPU available: False, using: 0 TPU cores
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre>HPU available: False, using: 0 HPUs
</pre>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jupyter-widgets jp-OutputArea-output" id="35bf8e3a-c090-41af-9004-c2bc3a722c6f" tabindex="0">
<script type="text/javascript">
var element = document.getElementById('35bf8e3a-c090-41af-9004-c2bc3a722c6f');
</script>
<script type="application/vnd.jupyter.widget-view+json">
{"version_major": 2, "version_minor": 0, "model_id": "86ca4919bf9d46f9a9f0c3c8a7dace29"}
</script>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0">
<pre>`Trainer.fit` stopped: `max_epochs=100` reached.
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=a98ffb20">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>Let's visualize the two solutions side by side!</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=0269fedf">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [16]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="n">solver</span><span class="o">.</span><span class="n">eval</span><span class="p">()</span>
<span class="c1"># get output and detach from computational graph for plotting</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">solver</span><span class="p">(</span><span class="n">input_data</span><span class="p">)</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span>
<span class="c1"># visualize data</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">axes</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">ncols</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">pic1</span> <span class="o">=</span> <span class="n">axes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">grid</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">grid</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">input_data</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">axes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s2">"Real"</span><span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">pic1</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">pic2</span> <span class="o">=</span> <span class="n">axes</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">grid</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">grid</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">output</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">axes</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s2">"Autoencoder"</span><span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">pic2</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
</div>
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
<img alt="No description has been provided for this image" class="" src=""/>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=206141f9">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>As we can see, the two solutions are really similar! We can compute the $l_2$ error quite easily as well:</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=ded8f91b">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [17]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span><span class="w"> </span><span class="nf">l2_error</span><span class="p">(</span><span class="n">input_</span><span class="p">,</span> <span class="n">target</span><span class="p">):</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">norm</span><span class="p">(</span><span class="n">input_</span> <span class="o">-</span> <span class="n">target</span><span class="p">,</span> <span class="nb">ord</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> <span class="o">/</span> <span class="n">torch</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">norm</span><span class="p">(</span>
<span class="n">input_</span><span class="p">,</span> <span class="nb">ord</span><span class="o">=</span><span class="mi">2</span>
<span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"l2 error: </span><span class="si">{</span><span class="n">l2_error</span><span class="p">(</span><span class="n">input_data</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="p">:,</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="n">output</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="p">:,</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="si">:</span><span class="s2">.2%</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
</div>
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>l2 error: 4.78%
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=c30996c4">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>More or less $4\%$ in $l_2$ error, which is really low considering the fact that we use just <strong>one</strong> convolutional layer and a simple feedforward to decrease the dimension. Let's see now some peculiarity of the filter.</p>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=f76db3b5">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<h3 id="Filter-for-upsampling">Filter for upsampling<a class="anchor-link" href="#Filter-for-upsampling">¶</a></h3><p>Suppose we have already the hidden representation and we want to upsample on a differen grid with more points. Let's see how to do it:</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=fcbbaec6">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [18]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># setting the seed</span>
<span class="n">torch</span><span class="o">.</span><span class="n">manual_seed</span><span class="p">(</span><span class="n">seed</span><span class="p">)</span>
<span class="n">grid2</span> <span class="o">=</span> <span class="n">circle_grid</span><span class="p">(</span><span class="mi">1500</span><span class="p">)</span> <span class="c1"># triple number of points</span>
<span class="n">input_data2</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">grid2</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">input_data2</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">grid2</span>
<span class="n">input_data2</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">pi</span> <span class="o">*</span> <span class="n">grid2</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">])</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span>
<span class="n">pi</span> <span class="o">*</span> <span class="n">grid2</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]</span>
<span class="p">)</span>
<span class="c1"># get the hidden representation from original input</span>
<span class="n">latent</span> <span class="o">=</span> <span class="n">solver</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">encoder</span><span class="p">(</span><span class="n">input_data</span><span class="p">)</span>
<span class="c1"># upsample on the second input_data2</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">solver</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">decoder</span><span class="p">(</span><span class="n">latent</span><span class="p">,</span> <span class="n">input_data2</span><span class="p">)</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span>
<span class="c1"># show the picture</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">axes</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">ncols</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">pic1</span> <span class="o">=</span> <span class="n">axes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">grid2</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">grid2</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">input_data2</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">axes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s2">"Real"</span><span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">pic1</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">pic2</span> <span class="o">=</span> <span class="n">axes</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">grid2</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">grid2</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">output</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">axes</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s2">"Up-sampling"</span><span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">pic2</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
</div>
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
<img alt="No description has been provided for this image" class="" src=""/>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=2cbf14b5">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<p>As we can see we have a very good approximation of the original function, even thought some noise is present. Let's calculate the error now:</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=ab505b75">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [19]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">"l2 error: </span><span class="si">{</span><span class="n">l2_error</span><span class="p">(</span><span class="n">input_data2</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="p">:,</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="n">output</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="p">:,</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="si">:</span><span class="s2">.2%</span><span class="si">}</span><span class="s2">"</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
</div>
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>l2 error: 9.72%
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=465cbd16">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<h3 id="Autoencoding-at-different-resolutions">Autoencoding at different resolutions<a class="anchor-link" href="#Autoencoding-at-different-resolutions">¶</a></h3><p>In the previous example we already had the hidden representation (of the original input) and we used it to upsample. Sometimes however we could have a finer mesh solution and we would simply want to encode it. This can be done without retraining! This procedure can be useful in case we have many points in the mesh and just a smaller part of them are needed for training. Let's see the results of this:</p>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=75ed28f5">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [20]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="cm-editor cm-s-jupyter">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># setting the seed</span>
<span class="n">torch</span><span class="o">.</span><span class="n">manual_seed</span><span class="p">(</span><span class="n">seed</span><span class="p">)</span>
<span class="n">grid2</span> <span class="o">=</span> <span class="n">circle_grid</span><span class="p">(</span><span class="mi">3500</span><span class="p">)</span> <span class="c1"># very fine mesh</span>
<span class="n">input_data2</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">grid2</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">input_data2</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">grid2</span>
<span class="n">input_data2</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">pi</span> <span class="o">*</span> <span class="n">grid2</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">])</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span>
<span class="n">pi</span> <span class="o">*</span> <span class="n">grid2</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]</span>
<span class="p">)</span>
<span class="c1"># get the hidden representation from finer mesh input</span>
<span class="n">latent</span> <span class="o">=</span> <span class="n">solver</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">encoder</span><span class="p">(</span><span class="n">input_data2</span><span class="p">)</span>
<span class="c1"># upsample on the second input_data2</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">solver</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">decoder</span><span class="p">(</span><span class="n">latent</span><span class="p">,</span> <span class="n">input_data2</span><span class="p">)</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span>
<span class="c1"># show the picture</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">axes</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">ncols</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">pic1</span> <span class="o">=</span> <span class="n">axes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">grid2</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">grid2</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">input_data2</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">axes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s2">"Real"</span><span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">pic1</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">pic2</span> <span class="o">=</span> <span class="n">axes</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">grid2</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">grid2</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">output</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">axes</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s2">"Autoencoder not re-trained"</span><span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">pic2</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
<span class="c1"># calculate l2 error</span>
<span class="nb">print</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">"l2 error: </span><span class="si">{</span><span class="n">l2_error</span><span class="p">(</span><span class="n">input_data2</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="p">:,</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="n">output</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="p">:,</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="si">:</span><span class="s2">.2%</span><span class="si">}</span><span class="s2">"</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
</div>
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
<img alt="No description has been provided for this image" class="" src=""/>
</div>
</div>
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
<pre>l2 error: 9.62%
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=8e720e55">
<div class="jp-Cell-inputWrapper" tabindex="0">
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
</div>
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<h2 id="What's-next?">What's next?<a class="anchor-link" href="#What's-next?">¶</a></h2><p>We have shown the basic usage of a convolutional filter. There are additional extensions possible:</p>
<ol>
<li><p>Train using Physics Informed strategies</p>
</li>
<li><p>Use the filter to build an unstructured convolutional autoencoder for reduced order modelling</p>
</li>
<li><p>Many more...</p>
</li>
</ol>
</div>
</div>
</div>
</div>
</main>
</body>
<script type="application/vnd.jupyter.widget-state+json">
{"state": {"6fb136c5465148448351bd76c9d832a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "933ba83c0c6649d79e383e564b15198d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "741b5ec8ba194e78b1c307ea2ebb954d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6fb136c5465148448351bd76c9d832a6", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_933ba83c0c6649d79e383e564b15198d", "tabbable": null, "tooltip": null, "value": 2.0}}, "6602d82efbd44aec89001834187549a4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "02e88b2d87d3417a8f93c50cf54ffe27": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "415ad5af929c453998bf3ffe453818e6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6602d82efbd44aec89001834187549a4", "placeholder": "\u200b", "style": "IPY_MODEL_02e88b2d87d3417a8f93c50cf54ffe27", "tabbable": null, "tooltip": null, "value": "Sanity\u2007Checking\u2007DataLoader\u20070:\u2007100%"}}, "d14b50013b164f09a8c6c46b33c7e7dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5b73481a4d094800b8898e15df813c04": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "479c4f0398d94937bf4b2c4f5ac05af0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d14b50013b164f09a8c6c46b33c7e7dc", "placeholder": "\u200b", "style": "IPY_MODEL_5b73481a4d094800b8898e15df813c04", "tabbable": null, "tooltip": null, "value": "\u20072\/2\u2007[00:00&lt;00:00,\u2007\u20074.62it\/s]"}}, "722bb000cb3c466c9b2a62450db223eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": "100%"}}, "26ad36fde42e48bda871f3180f8b564d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_415ad5af929c453998bf3ffe453818e6", "IPY_MODEL_741b5ec8ba194e78b1c307ea2ebb954d", "IPY_MODEL_479c4f0398d94937bf4b2c4f5ac05af0"], "layout": "IPY_MODEL_722bb000cb3c466c9b2a62450db223eb", "tabbable": null, "tooltip": null}}, "63ee61f960f94f1282af19f71e2e2a5f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd02822c66f64b38990ce4aeb9f5ec0c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5a4cd8797a03462092dfc68c46a7682c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_63ee61f960f94f1282af19f71e2e2a5f", "max": 110.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bd02822c66f64b38990ce4aeb9f5ec0c", "tabbable": null, "tooltip": null, "value": 110.0}}, "910e6177d0144f2ea3318b582b1ff03c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "62c548ec38c245bbb9e573beaf14fb5e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1642d24b47614a8ca35d2c435dc2a76d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_910e6177d0144f2ea3318b582b1ff03c", "placeholder": "\u200b", "style": "IPY_MODEL_62c548ec38c245bbb9e573beaf14fb5e", "tabbable": null, "tooltip": null, "value": "Epoch\u20070:\u2007100%"}}, "cf33ca5098ec4d25b107b8eba679752e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5f8015b746ab44cdad14a8fa0d140756": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9596cab5ef564cd9b8a380c2a4e478de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cf33ca5098ec4d25b107b8eba679752e", "placeholder": "\u200b", "style": "IPY_MODEL_5f8015b746ab44cdad14a8fa0d140756", "tabbable": null, "tooltip": null, "value": "\u2007110\/110\u2007[00:35&lt;00:00,\u2007\u20073.12it\/s,\u2007v_num=0,\u2007data_loss_step=0.867,\u2007train_loss_step=0.408,\u2007val_loss_step=0.867,\u2007data_loss_epoch=3.320,\u2007val_loss_epoch=0.635,\u2007train_loss_epoch=3.320]"}}, "6f30f30daf784f7d8a430cd86ef1717b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "c240c285cd5b40de82a3963b213307a1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1642d24b47614a8ca35d2c435dc2a76d", "IPY_MODEL_5a4cd8797a03462092dfc68c46a7682c", "IPY_MODEL_9596cab5ef564cd9b8a380c2a4e478de"], "layout": "IPY_MODEL_6f30f30daf784f7d8a430cd86ef1717b", "tabbable": null, "tooltip": null}}, "7d037655d9044e2cac9f392fac99a5f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5094bde42d9a4175824d0a51eb8416f8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6ebfca6355e4473790fd0d256676a8cc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7d037655d9044e2cac9f392fac99a5f5", "max": 16.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5094bde42d9a4175824d0a51eb8416f8", "tabbable": null, "tooltip": null, "value": 16.0}}, "58bb575183524cb8af0cb839ee92fb32": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8afa9e7f976a4734a5bb5459ea683b77": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8ef2bdd28bc44da98ea2c868fbd61c41": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_58bb575183524cb8af0cb839ee92fb32", "placeholder": "\u200b", "style": "IPY_MODEL_8afa9e7f976a4734a5bb5459ea683b77", "tabbable": null, "tooltip": null, "value": "Validation\u2007DataLoader\u20070:\u2007100%"}}, "644588b12bcb44349119b65fdd4f3915": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aea86bf2fcc9418dad4bd1bb1082e40a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9023d87d83124b3a80786cc0d334fee2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_644588b12bcb44349119b65fdd4f3915", "placeholder": "\u200b", "style": "IPY_MODEL_aea86bf2fcc9418dad4bd1bb1082e40a", "tabbable": null, "tooltip": null, "value": "\u200716\/16\u2007[00:03&lt;00:00,\u2007\u20074.69it\/s]"}}, "7abac25336fc40fca2c59f2471c27e86": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": "100%"}}, "e310c7f76ee14481add83f009ea32775": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8ef2bdd28bc44da98ea2c868fbd61c41", "IPY_MODEL_6ebfca6355e4473790fd0d256676a8cc", "IPY_MODEL_9023d87d83124b3a80786cc0d334fee2"], "layout": "IPY_MODEL_7abac25336fc40fca2c59f2471c27e86", "tabbable": null, "tooltip": null}}, "479b4729efed4efc88e59a830fa08b7c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5b4912e5f09c439aafa5d03844abb850": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "531ac5fffba94e94b5004f5529aa3df0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_479b4729efed4efc88e59a830fa08b7c", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5b4912e5f09c439aafa5d03844abb850", "tabbable": null, "tooltip": null, "value": 1.0}}, "5c2e56e95044451d91e8c7553d4754c8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff4ac29a5fe441b595e7f154e734bc6c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e9407719d1444501adb2a00d7b1e3cf7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5c2e56e95044451d91e8c7553d4754c8", "placeholder": "\u200b", "style": "IPY_MODEL_ff4ac29a5fe441b595e7f154e734bc6c", "tabbable": null, "tooltip": null, "value": "Epoch\u200799:\u2007100%"}}, "64b46305a7944c28bc00319199d4be9a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a07fb5e0eb014b2280adc52ed1cadd69": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "46acb628c1b04e63889e6f5aa657e8b4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_64b46305a7944c28bc00319199d4be9a", "placeholder": "\u200b", "style": "IPY_MODEL_a07fb5e0eb014b2280adc52ed1cadd69", "tabbable": null, "tooltip": null, "value": "\u20071\/1\u2007[00:00&lt;00:00,\u2007\u20073.24it\/s,\u2007v_num=1,\u2007data_loss=0.0319,\u2007train_loss=0.0319]"}}, "cccf6fcc567f4048991d13f1855f32bc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets\/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets\/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "86ca4919bf9d46f9a9f0c3c8a7dace29": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets\/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets\/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e9407719d1444501adb2a00d7b1e3cf7", "IPY_MODEL_531ac5fffba94e94b5004f5529aa3df0", "IPY_MODEL_46acb628c1b04e63889e6f5aa657e8b4"], "layout": "IPY_MODEL_cccf6fcc567f4048991d13f1855f32bc", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0}
</script>
</html>