21594 lines
608 KiB
Plaintext
Vendored
21594 lines
608 KiB
Plaintext
Vendored
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "6f71ca5c",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Tutorial: Physics Informed Neural Networks on PINA\n",
|
|
"\n",
|
|
"[](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial1/tutorial.ipynb)\n"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "ef4949c9",
|
|
"metadata": {},
|
|
"source": [
|
|
"In this tutorial, we will demonstrate a typical use case of **PINA** on a toy problem, following the standard API procedure. \n",
|
|
"\n",
|
|
"<p align=\"center\">\n",
|
|
" <img src=\"../../readme/API_color.png\" alt=\"PINA API\" width=\"400\"/>\n",
|
|
"</p>\n",
|
|
"\n",
|
|
"Specifically, the tutorial aims to introduce the following topics:\n",
|
|
"\n",
|
|
"* Explaining how to build **PINA** Problems,\n",
|
|
"* Showing how to generate data for `PINN` training\n",
|
|
"\n",
|
|
"These are the two main steps needed **before** starting the modelling optimization (choose model and solver, and train). We will show each step in detail, and at the end, we will solve a simple Ordinary Differential Equation (ODE) problem using the `PINN` solver."
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "cf9c96e3",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Build a PINA problem"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "8a819659",
|
|
"metadata": {},
|
|
"source": [
|
|
"Problem definition in the **PINA** framework is done by building a python `class`, which inherits from one or more problem classes (`SpatialProblem`, `TimeDependentProblem`, `ParametricProblem`, ...) depending on the nature of the problem. Below is an example:\n",
|
|
"### Simple Ordinary Differential Equation\n",
|
|
"Consider the following:\n",
|
|
"\n",
|
|
"$$\n",
|
|
"\\begin{equation}\n",
|
|
"\\begin{cases}\n",
|
|
"\\frac{d}{dx}u(x) &= u(x) \\quad x\\in(0,1)\\\\\n",
|
|
"u(x=0) &= 1 \\\\\n",
|
|
"\\end{cases}\n",
|
|
"\\end{equation}\n",
|
|
"$$\n",
|
|
"\n",
|
|
"with the analytical solution $u(x) = e^x$. In this case, our ODE depends only on the spatial variable $x\\in(0,1)$ , meaning that our `Problem` class is going to be inherited from the `SpatialProblem` class:\n",
|
|
"\n",
|
|
"```python\n",
|
|
"from pina.problem import SpatialProblem\n",
|
|
"from pina.domain import CartesianProblem\n",
|
|
"\n",
|
|
"class SimpleODE(SpatialProblem):\n",
|
|
" \n",
|
|
" output_variables = ['u']\n",
|
|
" spatial_domain = CartesianProblem({'x': [0, 1]})\n",
|
|
"\n",
|
|
" # other stuff ...\n",
|
|
"```\n",
|
|
"\n",
|
|
"Notice that we define `output_variables` as a list of symbols, indicating the output variables of our equation (in this case only $u$), this is done because in **PINA** the `torch.Tensor`s are labelled, allowing the user maximal flexibility for the manipulation of the tensor. The `spatial_domain` variable indicates where the sample points are going to be sampled in the domain, in this case $x\\in[0,1]$.\n",
|
|
"\n",
|
|
"What if our equation is also time-dependent? In this case, our `class` will inherit from both `SpatialProblem` and `TimeDependentProblem`:\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "2373a925",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"## routine needed to run the notebook on Google Colab\n",
|
|
"try:\n",
|
|
" import google.colab\n",
|
|
" IN_COLAB = True\n",
|
|
"except:\n",
|
|
" IN_COLAB = False\n",
|
|
"if IN_COLAB:\n",
|
|
" !pip install \"pina-mathlab\"\n",
|
|
"\n",
|
|
"from pina.problem import SpatialProblem, TimeDependentProblem\n",
|
|
"from pina.domain import CartesianDomain\n",
|
|
"\n",
|
|
"class TimeSpaceODE(SpatialProblem, TimeDependentProblem):\n",
|
|
" \n",
|
|
" output_variables = ['u']\n",
|
|
" spatial_domain = CartesianDomain({'x': [0, 1]})\n",
|
|
" temporal_domain = CartesianDomain({'t': [0, 1]})\n",
|
|
"\n",
|
|
" # other stuff ..."
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "ad8566b8",
|
|
"metadata": {},
|
|
"source": [
|
|
"where we have included the `temporal_domain` variable, indicating the time domain wanted for the solution.\n",
|
|
"\n",
|
|
"In summary, using **PINA**, we can initialize a problem with a class which inherits from different base classes: `SpatialProblem`, `TimeDependentProblem`, `ParametricProblem`, and so on depending on the type of problem we are considering. Here are some examples (more on the official documentation):\n",
|
|
"* ``SpatialProblem`` $\\rightarrow$ a differential equation with spatial variable(s) ``spatial_domain``\n",
|
|
"* ``TimeDependentProblem`` $\\rightarrow$ a time-dependent differential equation with temporal variable(s) ``temporal_domain``\n",
|
|
"* ``ParametricProblem`` $\\rightarrow$ a parametrized differential equation with parametric variable(s) ``parameter_domain``\n",
|
|
"* ``AbstractProblem`` $\\rightarrow$ any **PINA** problem inherits from here"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "592a4c43",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Write the problem class\n",
|
|
"\n",
|
|
"Once the `Problem` class is initialized, we need to represent the differential equation in **PINA**. In order to do this, we need to load the **PINA** operators from `pina.operators` module. Again, we'll consider Equation (1) and represent it in **PINA**:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "f2608e2e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from pina.problem import SpatialProblem\n",
|
|
"from pina.operator import grad\n",
|
|
"from pina import Condition\n",
|
|
"from pina.domain import CartesianDomain\n",
|
|
"from pina.equation import Equation, FixedValue\n",
|
|
"\n",
|
|
"import torch\n",
|
|
"\n",
|
|
"\n",
|
|
"class SimpleODE(SpatialProblem):\n",
|
|
"\n",
|
|
" output_variables = ['u']\n",
|
|
" spatial_domain = CartesianDomain({'x': [0, 1]})\n",
|
|
"\n",
|
|
" domains ={\n",
|
|
" 'x0': CartesianDomain({'x': 0.}),\n",
|
|
" 'D': CartesianDomain({'x': [0, 1]})\n",
|
|
" }\n",
|
|
"\n",
|
|
" # defining the ode equation\n",
|
|
" def ode_equation(input_, output_):\n",
|
|
"\n",
|
|
" # computing the derivative\n",
|
|
" u_x = grad(output_, input_, components=['u'], d=['x'])\n",
|
|
"\n",
|
|
" # extracting the u input variable\n",
|
|
" u = output_.extract(['u'])\n",
|
|
"\n",
|
|
" # calculate the residual and return it\n",
|
|
" return u_x - u\n",
|
|
"\n",
|
|
" # conditions to hold\n",
|
|
" conditions = {\n",
|
|
" 'bound_cond': Condition(domain='x0', equation=FixedValue(1.)),\n",
|
|
" 'phys_cond': Condition(domain='D', equation=Equation(ode_equation))\n",
|
|
" }\n",
|
|
"\n",
|
|
" # defining the true solution\n",
|
|
" def truth_solution(self, pts):\n",
|
|
" return torch.exp(pts.extract(['x']))\n",
|
|
" \n",
|
|
"problem = SimpleODE()"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "7cf64d01",
|
|
"metadata": {},
|
|
"source": [
|
|
"After we define the `Problem` class, we need to write different class methods, where each method is a function returning a residual. These functions are the ones minimized during PINN optimization, given the initial conditions. For example, in the domain $[0,1]$, the ODE equation (`ode_equation`) must be satisfied. We represent this by returning the difference between subtracting the variable `u` from its gradient (the residual), which we hope to minimize to 0. This is done for all conditions. Notice that we do not pass directly a `python` function, but an `Equation` object, which is initialized with the `python` function. This is done so that all the computations and internal checks are done inside **PINA**.\n",
|
|
"\n",
|
|
"Once we have defined the function, we need to tell the neural network where these methods are to be applied. To do so, we use the `Condition` class. In the `Condition` class, we pass the location points and the equation we want minimized on those points (other possibilities are allowed, see the documentation for reference).\n",
|
|
"\n",
|
|
"Finally, it's possible to define a `truth_solution` function, which can be useful if we want to plot the results and see how the real solution compares to the expected (true) solution. Notice that the `truth_solution` function is a method of the `PINN` class, but it is not mandatory for problem definition.\n"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "78b30f95",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Generate data \n",
|
|
"\n",
|
|
"Data for training can come in form of direct numerical simulation results, or points in the domains. In case we perform unsupervised learning, we just need the collocation points for training, i.e. points where we want to evaluate the neural network. Sampling point in **PINA** is very easy, here we show three examples using the `.discretise_domain` method of the `AbstractProblem` class."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "09ce5c3a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# sampling 20 points in [0, 1] through discretization in all locations\n",
|
|
"problem.discretise_domain(n=20, mode='grid', domains='all')\n",
|
|
"\n",
|
|
"# sampling 20 points in (0, 1) through latin hypercube sampling in D, and 1 point in x0\n",
|
|
"problem.discretise_domain(n=20, mode='latin', domains=['D'])\n",
|
|
"problem.discretise_domain(n=1, mode='random', domains=['x0'])\n",
|
|
"\n",
|
|
"# sampling 20 points in (0, 1) randomly\n",
|
|
"problem.discretise_domain(n=20, mode='random')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "8fbb679f",
|
|
"metadata": {},
|
|
"source": [
|
|
"We are going to use latin hypercube points for sampling. We need to sample in all the conditions domains. In our case we sample in `D` and `x0`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "329962b6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# sampling for training\n",
|
|
"problem.discretise_domain(1, 'random', domains=['x0']) # TODO check\n",
|
|
"problem.discretise_domain(20, 'lh', domains=['D'])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ca2ac5c2",
|
|
"metadata": {},
|
|
"source": [
|
|
"The points are saved in a python `dict`, and can be accessed by calling the attribute `input_pts` of the problem "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "d6ed9aaf",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Input points: {'x0': LabelTensor([[0.]]), 'D': LabelTensor([[0.3579],\n",
|
|
" [0.4598],\n",
|
|
" [0.2735],\n",
|
|
" [0.5365],\n",
|
|
" [0.9781],\n",
|
|
" [0.0321],\n",
|
|
" [0.0510],\n",
|
|
" [0.8479],\n",
|
|
" [0.6835],\n",
|
|
" [0.5861],\n",
|
|
" [0.8708],\n",
|
|
" [0.9179],\n",
|
|
" [0.1901],\n",
|
|
" [0.4485],\n",
|
|
" [0.7348],\n",
|
|
" [0.6365],\n",
|
|
" [0.7517],\n",
|
|
" [0.1215],\n",
|
|
" [0.3379],\n",
|
|
" [0.2152]])}\n",
|
|
"Input points labels: ['x']\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print('Input points:', problem.discretised_domains)\n",
|
|
"print('Input points labels:', problem.discretised_domains['D'].labels)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "669e8534",
|
|
"metadata": {},
|
|
"source": [
|
|
"To visualize the sampled points we can use `matplotlib.pyplot`:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "3802e22a",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGdCAYAAADuR1K7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIbVJREFUeJzt3XtwVPX9//HXJiEbVJLILSEapFAVFJQxmBDUoZVMY3FURhwRKSJNpVag/gii3CStVkO9ooIy2lrqCIVilSpmYjF4JwoGqNyrgoDgBiiyQS5JSD6/PxjWroQkmy+7y755PmZ2GE4+Z8/nfLK4z56cTT3OOScAAAAj4qI9AQAAgJOJuAEAAKYQNwAAwBTiBgAAmELcAAAAU4gbAABgCnEDAABMIW4AAIApCdGeQDTU19dr586datOmjTweT7SnAwAAmsE5p/379ysjI0NxcSe+PnNaxs3OnTuVmZkZ7WkAAIAW2L59u84999wTfv20jJs2bdpIOro4ycnJUZ4NAABojqqqKmVmZgbex0/ktIybYz+KSk5OJm4AAIgxTd1Swg3FAADAFOIGAACYQtwAAABTiBsAAGAKcQMAAEwhbgAAgCnEDQAAMIW4AQAAphA3AADAFOIGAACYQtwAAABTiBsAAGAKcQMAAEwhbgAAgCnEDQAAMIW4AQAAphA3AADAFOIGAACYQtwAAABTiBsAAGAKcQMAAEwhbgAAgCnEDQAAMIW4AQAAphA3AADAFOIGAACYQtwAAABTiBsAAGAKcQMAAEwhbgAAgCnEDQAAMIW4AQAAphA3AADAFOIGAACYQtwAAABTiBsAAGAKcQMAAEwhbgAAgCnEDQAAMIW4AQAAphA3AADAFOIGAACYQtwAAABTIhI3s2bNUpcuXZSUlKScnBwtX7680fELFy5U9+7dlZSUpF69eqmkpOSEY++88055PB7NmDHjJM8aAADEorDHzYIFC1RYWKiioiKtXLlSl156qfLz87Vr164Gxy9btkxDhw5VQUGBVq1apUGDBmnQoEFau3btcWNfe+01ffzxx8rIyAj3aQAAgBgR9rh54okndMcdd2jkyJG66KKLNHv2bJ1xxhl68cUXGxz/1FNP6ZprrtGECRPUo0cPPfjgg7rssss0c+bMoHE7duzQ2LFjNXfuXLVq1SrcpwEAAGJEWOOmpqZGFRUVysvL+/6AcXHKy8tTeXl5g/uUl5cHjZek/Pz8oPH19fUaPny4JkyYoIsvvrjJeVRXV6uqqiroAQAAbApr3OzZs0d1dXVKS0sL2p6Wliafz9fgPj6fr8nxf/zjH5WQkKDf/va3zZpHcXGxUlJSAo/MzMwQzwQAAMSKmPu0VEVFhZ566inNmTNHHo+nWftMmjRJfr8/8Ni+fXuYZwkAAKIlrHHTvn17xcfHq7KyMmh7ZWWl0tPTG9wnPT290fEffPCBdu3apc6dOyshIUEJCQnaunWrxo8fry5dujT4nF6vV8nJyUEPAABgU1jjJjExUVlZWSorKwtsq6+vV1lZmXJzcxvcJzc3N2i8JC1ZsiQwfvjw4frss8+0evXqwCMjI0MTJkzQW2+9Fb6TAQAAMSEh3AcoLCzUiBEj1KdPH2VnZ2vGjBk6cOCARo4cKUm67bbbdM4556i4uFiSdPfdd6t///56/PHHde2112r+/Pn69NNP9fzzz0uS2rVrp3bt2gUdo1WrVkpPT9eFF14Y7tMBAACnuLDHzZAhQ7R7925NmzZNPp9PvXv3VmlpaeCm4W3btiku7vsLSP369dO8efM0depUTZ48Weeff74WLVqknj17hnuqAADAAI9zzkV7EpFWVVWllJQU+f1+7r8BACBGNPf9O+Y+LQUAANAY4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmRCRuZs2apS5duigpKUk5OTlavnx5o+MXLlyo7t27KykpSb169VJJSUnga7W1tbrvvvvUq1cvnXnmmcrIyNBtt92mnTt3hvs0AABADAh73CxYsECFhYUqKirSypUrdemllyo/P1+7du1qcPyyZcs0dOhQFRQUaNWqVRo0aJAGDRqktWvXSpIOHjyolStX6v7779fKlSv16quvatOmTbr++uvDfSoAACAGeJxzLpwHyMnJ0eWXX66ZM2dKkurr65WZmamxY8dq4sSJx40fMmSIDhw4oMWLFwe29e3bV71799bs2bMbPMaKFSuUnZ2trVu3qnPnzk3OqaqqSikpKfL7/UpOTm7hmQEAgEhq7vt3WK/c1NTUqKKiQnl5ed8fMC5OeXl5Ki8vb3Cf8vLyoPGSlJ+ff8LxkuT3++XxeJSamtrg16urq1VVVRX0AAAANoU1bvbs2aO6ujqlpaUFbU9LS5PP52twH5/PF9L4w4cP67777tPQoUNPWHHFxcVKSUkJPDIzM1twNgAAIBbE9KelamtrdfPNN8s5p+eee+6E4yZNmiS/3x94bN++PYKzBAAAkZQQzidv37694uPjVVlZGbS9srJS6enpDe6Tnp7erPHHwmbr1q1aunRpoz9783q98nq9LTwLAAAQS8J65SYxMVFZWVkqKysLbKuvr1dZWZlyc3Mb3Cc3NzdovCQtWbIkaPyxsPn888/19ttvq127duE5AQAAEHPCeuVGkgoLCzVixAj16dNH2dnZmjFjhg4cOKCRI0dKkm677Tadc845Ki4uliTdfffd6t+/vx5//HFde+21mj9/vj799FM9//zzko6GzU033aSVK1dq8eLFqqurC9yP07ZtWyUmJob7lAAAwCks7HEzZMgQ7d69W9OmTZPP51Pv3r1VWloauGl427Ztiov7/gJSv379NG/ePE2dOlWTJ0/W+eefr0WLFqlnz56SpB07duj111+XJPXu3TvoWO+8845+8pOfhPuUAADAKSzsv+fmVMTvuQEAIPacEr/nBgAAINKIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJgSkbiZNWuWunTpoqSkJOXk5Gj58uWNjl+4cKG6d++upKQk9erVSyUlJUFfd85p2rRp6tSpk1q3bq28vDx9/vnn4TwFAAAQI8IeNwsWLFBhYaGKioq0cuVKXXrppcrPz9euXbsaHL9s2TINHTpUBQUFWrVqlQYNGqRBgwZp7dq1gTGPPPKInn76ac2ePVuffPKJzjzzTOXn5+vw4cPhPp0mfeM/pGVf7tE3/kOh7ejfIW15/+if/5cx4RbNOYR67EjONRrrEiuvmeZoaJ6n2tzDOZ9YfO5ozvlUe200JZT5xuL3K5rHOgGPc86F8wA5OTm6/PLLNXPmTElSfX29MjMzNXbsWE2cOPG48UOGDNGBAwe0ePHiwLa+ffuqd+/emj17tpxzysjI0Pjx43XPPfdIkvx+v9LS0jRnzhzdcsstTc6pqqpKKSkp8vv9Sk5OPklnKi1YsU2TXl2jeifFeaTiG3tpyOWdm95x5UvSG3dLrl7yxEnXPSVddlvoY8ItmnMI9diRnGs01iVWXjPN0dA8pVNr7uFcy1h87mjOOVZe18eEMt9Y/H5F+FjNff8O65WbmpoaVVRUKC8v7/sDxsUpLy9P5eXlDe5TXl4eNF6S8vPzA+O3bNkin88XNCYlJUU5OTknfM7q6mpVVVUFPU62b/yHAmEjSfVOmvzq2qav4Ph3fP9CkI7++cb/O/5/wTY1JtyiOYdQjx3JuUZjXWLlNdMcDc7zbun13546cw/nWsbic0dzzrHyuj4mlPnG4vcrmsdqQljjZs+ePaqrq1NaWlrQ9rS0NPl8vgb38fl8jY4/9mcoz1lcXKyUlJTAIzMzs0Xn05gtew4EwuaYOuf01Z6Dje+498vvXwjHuDpp7+bQxoRbNOcQ6rEjOddorEusvGaao8F51kv6wT+maM49nGsZi88dzTnHyuv6mFDmG4vfr2geqwmnxaelJk2aJL/fH3hs3779pB/jR+3PVJwneFu8x6Mu7c9ofMe23Y5euvtfnnipbdfQxoRbNOcQ6rEjOddorEusvGaao8F5xkn6wT+maM49nGsZi88dzTnHyuv6mFDmG4vfr2geqwlhjZv27dsrPj5elZWVQdsrKyuVnp7e4D7p6emNjj/2ZyjP6fV6lZycHPQ42TqltFbxjb0U7zn6H+V4j0cP39hTnVJaN75jyjlHfybpiT/6d0+8dN2Mo9tDGRNu0ZxDqMeO5FyjsS6x8pppjgbn+ZR0/dOnztzDuZax+NzRnHOsvK6PCWW+sfj9iuaxmhCRG4qzs7P1zDPPSDp6Q3Hnzp01ZsyYE95QfPDgQb3xxhuBbf369dMll1wSdEPxPffco/Hjx0s6eoNRx44do35DsXT03puv9hxUl/ZnNB02/8u/4+ilu7ZdT/xCaM6YcIvmHEI9diTnGo11iZXXTHM0NM9Tbe7hnE8sPnc053yqvTaaEsp8Y/H7FcFjNfv924XZ/PnzndfrdXPmzHHr1693o0aNcqmpqc7n8znnnBs+fLibOHFiYPxHH33kEhIS3GOPPeY2bNjgioqKXKtWrdyaNWsCY6ZPn+5SU1PdP//5T/fZZ5+5G264wf3oRz9yhw4datac/H6/k+T8fv/JPVkAABA2zX3/TjipSdWAIUOGaPfu3Zo2bZp8Pp969+6t0tLSwA3B27ZtU1zc9z8d69evn+bNm6epU6dq8uTJOv/887Vo0SL17NkzMObee+/VgQMHNGrUKO3bt09XXnmlSktLlZSUFO7TAQAAp7iw/1jqVBTOH0sBAIDwOCV+zw0AAECkETcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwhbgBAACmEDcAAMAU4gYAAJhC3AAAAFOIGwAAYApxAwAATCFuAACAKcQNAAAwJWxxs3fvXg0bNkzJyclKTU1VQUGBvvvuu0b3OXz4sEaPHq127drprLPO0uDBg1VZWRn4+r///W8NHTpUmZmZat26tXr06KGnnnoqXKcAAABiUNjiZtiwYVq3bp2WLFmixYsX6/3339eoUaMa3WfcuHF64403tHDhQr333nvauXOnbrzxxsDXKyoq1LFjR7388stat26dpkyZokmTJmnmzJnhOg0AABBjPM45d7KfdMOGDbrooou0YsUK9enTR5JUWlqqgQMH6uuvv1ZGRsZx+/j9fnXo0EHz5s3TTTfdJEnauHGjevToofLycvXt27fBY40ePVobNmzQ0qVLmz2/qqoqpaSkyO/3Kzk5uQVnCAAAIq25799huXJTXl6u1NTUQNhIUl5enuLi4vTJJ580uE9FRYVqa2uVl5cX2Na9e3d17txZ5eXlJzyW3+9X27ZtT97kAQBATEsIx5P6fD517Ngx+EAJCWrbtq18Pt8J90lMTFRqamrQ9rS0tBPus2zZMi1YsEBvvvlmo/Oprq5WdXV14O9VVVXNOAsAABCLQrpyM3HiRHk8nkYfGzduDNdcg6xdu1Y33HCDioqK9LOf/azRscXFxUpJSQk8MjMzIzJHAAAQeSFduRk/frxuv/32Rsd07dpV6enp2rVrV9D2I0eOaO/evUpPT29wv/T0dNXU1Gjfvn1BV28qKyuP22f9+vUaMGCARo0apalTpzY570mTJqmwsDDw96qqKgIHAACjQoqbDh06qEOHDk2Oy83N1b59+1RRUaGsrCxJ0tKlS1VfX6+cnJwG98nKylKrVq1UVlamwYMHS5I2bdqkbdu2KTc3NzBu3bp1uvrqqzVixAg99NBDzZq31+uV1+tt1lgAABDbwvJpKUn6+c9/rsrKSs2ePVu1tbUaOXKk+vTpo3nz5kmSduzYoQEDBuill15Sdna2JOk3v/mNSkpKNGfOHCUnJ2vs2LGSjt5bIx39UdTVV1+t/Px8Pfroo4FjxcfHNyu6juHTUgAAxJ7mvn+H5YZiSZo7d67GjBmjAQMGKC4uToMHD9bTTz8d+Hptba02bdqkgwcPBrY9+eSTgbHV1dXKz8/Xs88+G/j6K6+8ot27d+vll1/Wyy+/HNh+3nnn6auvvgrXqQAAgBgStis3pzKu3AAAEHui+ntuAAAAooW4AQAAphA3AADAFOIGAACYQtwAAABTiBsAAGAKcQMAAEwhbgAAgCnEDQAAMIW4AQAAphA3AADAFOIGAACYQtwAAABTiBsAAGAKcQMAAEwhbgAAgCnEDQAAMIW4AQAAphA3AADAFOIGAACYQtwAAABTiBsAAGAKcQMAAEwhbgAAgCnEDQAAMIW4AQAAphA3AADAFOIGAACYQtwAAABTiBsAAGAKcQMAAEwhbgAAgCnEDQAAMIW4AQAAphA3AADAFOIGAACYQtwAAABTiBsAAGAKcQMAAEwhbgAAgCnEDQAAMIW4AQAAphA3AADAFOIGAACYQtwAAABTiBsAAGAKcQMAAEwhbgAAgCnEDQAAMIW4AQAAphA3AADAFOIGAACYQtwAAABTiBsAAGAKcQMAAEwhbgAAgCnEDQAAMCVscbN3714NGzZMycnJSk1NVUFBgb777rtG9zl8+LBGjx6tdu3a6ayzztLgwYNVWVnZ4Nj//ve/Ovfcc+XxeLRv374wnAEAAIhFYYubYcOGad26dVqyZIkWL16s999/X6NGjWp0n3HjxumNN97QwoUL9d5772nnzp268cYbGxxbUFCgSy65JBxTBwAAMczjnHMn+0k3bNigiy66SCtWrFCfPn0kSaWlpRo4cKC+/vprZWRkHLeP3+9Xhw4dNG/ePN10002SpI0bN6pHjx4qLy9X3759A2Ofe+45LViwQNOmTdOAAQP07bffKjU1tdnzq6qqUkpKivx+v5KTk/9vJwsAACKiue/fYblyU15ertTU1EDYSFJeXp7i4uL0ySefNLhPRUWFamtrlZeXF9jWvXt3de7cWeXl5YFt69ev1wMPPKCXXnpJcXHNm351dbWqqqqCHgAAwKawxI3P51PHjh2DtiUkJKht27by+Xwn3CcxMfG4KzBpaWmBfaqrqzV06FA9+uij6ty5c7PnU1xcrJSUlMAjMzMztBMCAAAxI6S4mThxojweT6OPjRs3hmuumjRpknr06KFf/OIXIe/n9/sDj+3bt4dphgAAINoSQhk8fvx43X777Y2O6dq1q9LT07Vr166g7UeOHNHevXuVnp7e4H7p6emqqanRvn37gq7eVFZWBvZZunSp1qxZo1deeUWSdOx2ofbt22vKlCn6/e9/3+Bze71eeb3e5pwiAACIcSHFTYcOHdShQ4cmx+Xm5mrfvn2qqKhQVlaWpKNhUl9fr5ycnAb3ycrKUqtWrVRWVqbBgwdLkjZt2qRt27YpNzdXkvSPf/xDhw4dCuyzYsUK/fKXv9QHH3ygbt26hXIqAADAqJDiprl69Oiha665RnfccYdmz56t2tpajRkzRrfcckvgk1I7duzQgAED9NJLLyk7O1spKSkqKChQYWGh2rZtq+TkZI0dO1a5ubmBT0r9MGD27NkTOF4on5YCAAB2hSVuJGnu3LkaM2aMBgwYoLi4OA0ePFhPP/104Ou1tbXatGmTDh48GNj25JNPBsZWV1crPz9fzz77bLimCAAADArL77k51fF7bgAAiD1R/T03AAAA0ULcAAAAU4gbAABgCnEDAABMIW4AAIApxA0AADCFuAEAAKYQNwAAwBTiBgAAmELcAAAAU4gbAABgCnEDAABMIW4AAIApxA0AADCFuAEAAKYQNwAAwBTiBgAAmELcAAAAU4gbAABgCnEDAABMIW4AAIApxA0AADCFuAEAAKYQNwAAwBTiBgAAmELcAAAAU4gbAABgCnEDAABMIW4AAIApxA0AADCFuAEAAKYQNwAAwBTiBgAAmELcAAAAU4gbAABgCnEDAABMIW4AAIApxA0AADCFuAEAAKYQNwAAwBTiBgAAmELcAAAAUxKiPYFocM5JkqqqqqI8EwAA0FzH3rePvY+fyGkZN/v375ckZWZmRnkmAAAgVPv371dKSsoJv+5xTeWPQfX19dq5c6fatGkjj8dzUp+7qqpKmZmZ2r59u5KTk0/qc+N4rHdksd6RxXpHFusdeaGuuXNO+/fvV0ZGhuLiTnxnzWl55SYuLk7nnntuWI+RnJzMP44IYr0ji/WOLNY7sljvyAtlzRu7YnMMNxQDAABTiBsAAGAKcXOSeb1eFRUVyev1RnsqpwXWO7JY78hivSOL9Y68cK35aXlDMQAAsIsrNwAAwBTiBgAAmELcAAAAU4gbAABgCnETolmzZqlLly5KSkpSTk6Oli9f3uj4hQsXqnv37kpKSlKvXr1UUlISoZnaEcqav/DCC7rqqqt09tln6+yzz1ZeXl6T3yMEC/U1fsz8+fPl8Xg0aNCg8E7QmFDXe9++fRo9erQ6deokr9erCy64gP+uhCDU9Z4xY4YuvPBCtW7dWpmZmRo3bpwOHz4codnGtvfff1/XXXedMjIy5PF4tGjRoib3effdd3XZZZfJ6/Xqxz/+sebMmdOygzs02/z5811iYqJ78cUX3bp169wdd9zhUlNTXWVlZYPjP/roIxcfH+8eeeQRt379ejd16lTXqlUrt2bNmgjPPHaFuua33nqrmzVrllu1apXbsGGDu/32211KSor7+uuvIzzz2BTqeh+zZcsWd84557irrrrK3XDDDZGZrAGhrnd1dbXr06ePGzhwoPvwww/dli1b3LvvvutWr14d4ZnHplDXe+7cuc7r9bq5c+e6LVu2uLfeest16tTJjRs3LsIzj00lJSVuypQp7tVXX3WS3Guvvdbo+M2bN7szzjjDFRYWuvXr17tnnnnGxcfHu9LS0pCPTdyEIDs7240ePTrw97q6OpeRkeGKi4sbHH/zzTe7a6+9NmhbTk6O+/Wvfx3WeVoS6pr/0JEjR1ybNm3cX//613BN0ZSWrPeRI0dcv3793J/+9Cc3YsQI4iYEoa73c88957p27epqamoiNUVTQl3v0aNHu6uvvjpoW2FhobviiivCOk+LmhM39957r7v44ouDtg0ZMsTl5+eHfDx+LNVMNTU1qqioUF5eXmBbXFyc8vLyVF5e3uA+5eXlQeMlKT8//4TjEawla/5DBw8eVG1trdq2bRuuaZrR0vV+4IEH1LFjRxUUFERimma0ZL1ff/115ebmavTo0UpLS1PPnj318MMPq66uLlLTjlktWe9+/fqpoqIi8KOrzZs3q6SkRAMHDozInE83J/M987T8P85siT179qiurk5paWlB29PS0rRx48YG9/H5fA2O9/l8YZunJS1Z8x+67777lJGRcdw/GByvJev94Ycf6s9//rNWr14dgRna0pL13rx5s5YuXaphw4appKREX3zxhe666y7V1taqqKgoEtOOWS1Z71tvvVV79uzRlVdeKeecjhw5ojvvvFOTJ0+OxJRPOyd6z6yqqtKhQ4fUunXrZj8XV25g1vTp0zV//ny99tprSkpKivZ0zNm/f7+GDx+uF154Qe3bt4/2dE4L9fX16tixo55//nllZWVpyJAhmjJlimbPnh3tqZn07rvv6uGHH9azzz6rlStX6tVXX9Wbb76pBx98MNpTQxO4ctNM7du3V3x8vCorK4O2V1ZWKj09vcF90tPTQxqPYC1Z82Mee+wxTZ8+XW+//bYuueSScE7TjFDX+8svv9RXX32l6667LrCtvr5ekpSQkKBNmzapW7du4Z10DGvJ67tTp05q1aqV4uPjA9t69Oghn8+nmpoaJSYmhnXOsawl633//fdr+PDh+tWvfiVJ6tWrlw4cOKBRo0ZpypQpiovj+sDJdKL3zOTk5JCu2khcuWm2xMREZWVlqaysLLCtvr5eZWVlys3NbXCf3NzcoPGStGTJkhOOR7CWrLkkPfLII3rwwQdVWlqqPn36RGKqJoS63t27d9eaNWu0evXqwOP666/XT3/6U61evVqZmZmRnH7Macnr+4orrtAXX3wRiEhJ+s9//qNOnToRNk1oyXofPHjwuIA5FpaO/1vGk+6kvmeGfAvyaWz+/PnO6/W6OXPmuPXr17tRo0a51NRU5/P5nHPODR8+3E2cODEw/qOPPnIJCQnusccecxs2bHBFRUV8FDxEoa759OnTXWJionvllVfcN998E3js378/WqcQU0Jd7x/i01KhCXW9t23b5tq0aePGjBnjNm3a5BYvXuw6duzo/vCHP0TrFGJKqOtdVFTk2rRp4/72t7+5zZs3u3/961+uW7du7uabb47WKcSU/fv3u1WrVrlVq1Y5Se6JJ55wq1atclu3bnXOOTdx4kQ3fPjwwPhjHwWfMGGC27Bhg5s1axYfBY+UZ555xnXu3NklJia67Oxs9/HHHwe+1r9/fzdixIig8X//+9/dBRdc4BITE93FF1/s3nzzzQjPOPaFsubnnXeek3Tco6ioKPITj1Ghvsb/F3ETulDXe9myZS4nJ8d5vV7XtWtX99BDD7kjR45EeNaxK5T1rq2tdb/73e9ct27dXFJSksvMzHR33XWX+/bbbyM/8Rj0zjvvNPjf42NrPGLECNe/f//j9undu7dLTEx0Xbt2dX/5y19adGyPc1xbAwAAdnDPDQAAMIW4AQAAphA3AADAFOIGAACYQtwAAABTiBsAAGAKcQMAAEwhbgAAgCnEDQAAMIW4AQAAphA3AADAFOIGAACY8v8Bcub3wPqFg0kAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import matplotlib.pyplot as plt\n",
|
|
"variables=problem.spatial_variables\n",
|
|
"fig = plt.figure()\n",
|
|
"proj = \"3d\" if len(variables) == 3 else None\n",
|
|
"ax = fig.add_subplot(projection=proj)\n",
|
|
"for location in problem.input_pts:\n",
|
|
" coords = problem.input_pts[location].extract(variables).T.detach()\n",
|
|
" ax.plot(coords.flatten(),torch.zeros(coords.flatten().shape),\".\",label=location)\n"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "22e502dd",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Perform a small training"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "075f43f5",
|
|
"metadata": {},
|
|
"source": [
|
|
"Once we have defined the problem and generated the data we can start the modelling. Here we will choose a `FeedForward` neural network available in `pina.model`, and we will train using the `PINN` solver from `pina.solver`. We highlight that this training is fairly simple, for more advanced stuff consider the tutorials in the ***Physics Informed Neural Networks*** section of ***Tutorials***. For training we use the `Trainer` class from `pina.trainer`. Here we show a very short training and some method for plotting the results. Notice that by default all relevant metrics (e.g. MSE error during training) are going to be tracked using a `lightning` logger, by default `CSVLogger`. If you want to track the metric by yourself without a logger, use `pina.callbacks.MetricTracker`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "3bb4dc9b",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"GPU available: False, used: False\n",
|
|
"TPU available: False, using: 0 TPU cores\n",
|
|
"HPU available: False, using: 0 HPUs\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f87fba27dd664812a8745af6b2adcce2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Sanity Checking: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a9218fefceaf42c0bec46893ea92c0a4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Training: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "56d3a29ba694414a947c343ce36c3ecb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ef339fc6f6e84fd0a2f126b7f3ffef1f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8028551b1ecb4614bce42fe35906770d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2b04b17ebea04644bb8861764fae70b3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "64521c3791534cba8ea09e10fa60099a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d52517dedc154f3d8fcb9285bec9d610",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d43d35e8b8724c5abb9ccf459d4676f8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "70d2eb3d2fc549f7bf97a08e83e3a62d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bdba3ab1f4a24fe8a2aa609d34d31222",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f2b344b72a74491ab52c32c53a2cbe59",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5137fbb415a74326be3f6a1c27328282",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "04c5a12eabd2424fb1ac9194c009deb9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "40c1c932d7f94f4284e2bdc7a55c685a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7f2ef9ec45c141da83b14a001287c22c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d5e3d9dc76174707963910cac6f702c5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "119e2c4e1c1441f489de5871b72c3947",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d7e4dad94575481e82a4a8586b5589c8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "19fde8aee99d4883b555c07760d81130",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3fef2006d491419aad9673291c436af1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "80c17d4b605e454db0fcd4233e805f9d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6abc2f4bbe3b43bab116c0f8cbbe31d4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e398c1204a354f408442ec3c0f6d137c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "75791f34626241b39c2cad592daa7359",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c5c5b66eb01c4a94b2c14d429733bac6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "74464c66e6ba42e1bb80db9c5309620e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6059e43ac4ad494482fa01ff1e8177e1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1f5e6533814844eaaefdcbec70e72b7a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e2fcd76f4fd4455dbcc6e7ce99127add",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1a4f52386234477786d9d962aafea2f1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c002a64b1721481aa69f1e40db038b45",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "38c463d7fc5f46b7a56279ba8c40bdda",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e436a7c0598b40deaae4dfc2d77e4719",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9eb9050168194861aa4cca39ef73d955",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6665ffacb670482d992764cde1a450e8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "25563c8f07af4aceaf40886cc1103f09",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5a6fbe99aed849a7804aadc0f18c3b7c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "93c57fbc5e1a4a2db954cc0e39531136",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d4b85afe70a64f90b1970a6fa79b3944",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7b54b4005ae848ccb6d7aa6408ebdc7a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c513270160854d73983531607b00a548",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9c71d9816c2e4c37a2d3a6562000cc4b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1c6debc210ef47f8b2a4d00ea1e9eed7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8cda94a961474c39ac487be05c8f6b66",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "87fc643a0ef8407e969b4d648e45870c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fb300061b1ed46eb8c16f14e52ab3b26",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "80f43d102f42444c9277ce80cd5d2401",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "46f48a2428b549fc9432f4fa7fef8615",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b3ced77f6e464c7abcd2df8227ec1c78",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c7d2975f2d924e14928a1a242aca7278",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d3d5f15b0d6f41a09d9b94104f9ea573",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1fdc4abd63aa4181bf7084992cc06592",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "409cfbce8d7f43dd9fb342d6faee1bda",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e27ef4ef3a764940b78908b59909e663",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e7ff718324114a17b08f3ebd67c1a54c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5b2774893a91425ca5665ad81b61d240",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b3829835c4ff4850bad982d3c93b5982",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b5781e7f2d0643aca8f8bf00e8cea2cb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "60f1d75a9e7c45fda1493f412918af5d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dc95837f0081480ebcd18bd0752a0320",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bdbf837181e348068db3f2a7ae3709d4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "716895c10f6b463a8ca452097ddd7d05",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "03581819e86043159021f1942fbb20ee",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c646c008866349c0b64bd2c9214e6bf9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "63389b3a449946dda5b387cbc4dc3390",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d267afbb77e74dd2a01e831789e6119d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "81436a8ed5b944c3afea23ec0f95b435",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "daf3a2c915e044d7a6846a81bbf28942",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e5f7e89d8d444b8e8306ed848fe90f81",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0deac6df469d4888bfe12188259c4153",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "cc577ffe35b94972b658717efd4f01cb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fae08a088d4f4c3aa0f51acab5d5b059",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4143d54b37784147add4226ccdc8d590",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "306dbf3a0a914e0d922153c264491997",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2f05327cfee74c94b5f4173e3896bfa2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d7a9e14056c0408a809d6d3706ebb3d5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "41f209e2b5df484ca90bcf77893d473c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "82efa05fb8e3405b9fcd832bcaa2a024",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "af0e5f196fce42bda2f11668c7c87fa1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2ade0c99ef454df1924a4f24f6ca671d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3c7d46c4c5dd49179a8aa4bb5ac73f3f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "35a3159bbd624d1786682a0ee22b85e3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4edec7ff54144c4ca4c7b9cec1709a6a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "959cf9c724f142d1974b8d200cec9306",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9957aaadf7714bf89aaa86f2c02484fa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "02455ea43c344cd79844d662c455c0c2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f2297e50cace49bbaa9af932b2fd7afb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2a703c4b94714ffb99732ca9e7f41ffc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "836623a1905f470a97264164f0256da5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0c82dbc11cb245b7abf3b811e0d72c1a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "879297e7ed8443c29d1d393501d8efef",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "03b1e980460e4224ad6813b4d2d47f87",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2c8f533e88554e43a2b74770efd904cb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6dbcfa1c045942f9bf958f743cffd0f1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3f27ce21a00946b6b33733753301fdd6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b7ed9a1f072840c0a94f128296f949e1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9ce7d0dc6aa9451794e10d408f3c140e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5e4e3557feed46aeada6df2a68195c8d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "39fb99af076946b1acc1887a8736522e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a235915ac9bc4bb3aa503ba89413eb93",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "20596f732194435ebae6d4bfed9312b3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "40d8f294ffbe4ec59a6a1ed175494faf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4fdabc793a2143b998f95f4c27d38c81",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7efea59903454f4db45434f2082e995f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "49f7794859334adfb20bf5744f5ae826",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d054e77fb54f45acbf3f2049b3d56498",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8b69360b347c484886924ddb4963da8c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1ce507e2120f499ebdf537f0b6a585f7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "13ed3196651e4f3295944f632868d2b5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8a9900d8e04c4106b07bf4c512b24837",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1b0f29196d4c4ff4aad413c3965f4c6f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c5413886547947778e00137d43bd231f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "716ea64d0f4c413f9a28c68e6f1a61d6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2e2a5807001a43a1abaad6509d143721",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3bfa24c87de042b68dfd117ac185cdc9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ca3b4f3446c24dfca2fe1165008ec982",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "682ef85ce2e2459a8a838fda50ddffe7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "33780d8c2244410dbb153c4d8b6f9a33",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e0262bc03a1d49409de7ae2812f67eb1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8f1f02011aa14c74a8486d0a0912c3f5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7c75ffc029db4bbcb3c9229974395e3e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "549d6506855c4ac69094f0fe4e911fa3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "577f0cf5f905440facf1c5d5d28685eb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b94313a87e7e498a96a17b82737da6ed",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "352267426efa4cdbae9f8987eecf2a7c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "112c7b1ab0564426a5117a6445b9c101",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f68344ba513d445f96020a33dafdb511",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9c0c0edfd19844a2acc9d6cb541947ed",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "72ef996008794ee1a49d9f1c25e3bf65",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9053e936981846e6a50327397ee55cba",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b495265358fc4a31b5bfa34abb5da5eb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6d854d37b00743f3971816765c9ceb24",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4b8af2700dbe4d0f99ea79800768aca1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b0a734e7aed442a2a3adb9c255ba199e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "00954139fbef4cf490f6f7d5ea6545ab",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c49ec3cc6180408ab4657a5e7eb7a312",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e92edcfe99094e5eaa5b9c1c6ede2c4d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "58aac990da8c47578742bb7a64a52bea",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4f7d8936551d4e62901becd61a89a3c2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a0dde1d744f8490b958969f1db40b2a5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1969378c9b5d481c966f7b00345d1b8e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "93fa7c26cc1d4025a893a5d61996cac9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "663bbcff312d4890a33aa19c5fb4b495",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dc0deb7cf0cb4e77b00225c82b96b169",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c38e48e025a34bdf86449e85e69ade5b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2478fab2ca0f47209e69bfcdd5b5d61f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "39e6eee998344464831d8bc92c592e8c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b7e90bedc49340f6834504715a556e97",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "011ea88cbbc04fd59efd938c90f3ea74",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e571f69928db46739efdac718863186e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "db0131cca4584584b42163bcf7fa4eb4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "97a9accffaed4dee9d3478982fa3fa40",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ffec24638f45451480aa7749185a4954",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1901833d62a64377884cb61145850e25",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3d736b57ff254656a55947466c07d001",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0727cf7e0594473facbc265784b4543a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0af888dfdc57476ba9ff0c9670240271",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "61bac96d76994810af402e327b1456e9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0f97a7cbeeb7408fa91e088d4e211082",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "41a0ba7acf5e4053bd96c498fdb6cef1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3f4548eaa719467b88500ba1479f698a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a85074d7c1794c72aa47aabfb4f64b7c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d81e00d672cc4e878d750bd2fa6ffff4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c7cf383db8e04160a1cab000575ac942",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fd970d0530a143f188a1832e8db9ae93",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5d708d4daa4c473ca3df39e5a6abf6d5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "93b96d1bef694f8abba7bcea747a6135",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b7e7336ea82d48179b71692e17995468",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d83f5d13ba804aa49064ee135a8e2d99",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "acefe220106c4a3085153c882d3d0a81",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e2e63382ac4640479679e45bdf8f37d6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e554035897ec483f8af7ef5ab350793a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b973f2e8096940588505894abd95a81a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "df3135f28bf44b54bf036de5361ec601",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e1a0f824c88649ed8d262d19f101bbfc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f1c1d49b7db6420cb2f5ee68ce54f579",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a9292e84924f4129a26b27559f9f5b87",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5fd19d6c394b4cdfb8e9864d567bbe0d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b4cb0018bd4547ce8f4349ac6f0d62d7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2c85b79dd57a410aab9aa434586e2820",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8900f1f9f89b484e98a28abe71cd3923",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b79ffcc961414582a22a60c1fbb39357",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bf08ddb821b04a26aa247b0950a66b44",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9c05886ed0a74fdebe5d2e02110eff75",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "97d19795b5ff4d71bf48fd95d41f8c63",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5a06e1cf02814841b5f235248a7d770c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d1c889e411404d2886e9cf22ef4eed98",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "78f679335d1346a2b951f3831ab7b954",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "faac3ac33f7047e495f1cbf270643e03",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e62179fd0fb6467fa37d8a27dcca1344",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "00c079d221e74c2c824e3c8e2d1bdffd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0706eec524b94baa8e48b40166d3a6c1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8ae273a4a9714efaa515e858e5c52dec",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "52f37cd7265f44a1b4ef8b9221e59856",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5030083513674889907b4bbe481c57f8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "24d47d0b823e44a085029d06e45933c1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dabdaee82efb439f96275ecbb6df10dd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7feb1f7132dd42429f71350bd192e395",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "80d83d7e57cc4db68fc4355eaf030273",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8e02f1d6ac39440887bd271e23a098e5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d2b80eef0fa342c3b4364e4b63f25c93",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "be7dc60b680e41cb93022cd2439ef875",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d7f882ac0c914bbabfb69bdf9d944c0c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ffae447d49f741fca35c7aa74cf75977",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "05de2525ebcc4d889e4bc5a3836fa6d5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8fa94a6da7924d349dfc939005418bb9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4fb1622061c44346a3f0c0e90c279845",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d0293b6e895b4845bbfd2ef8df58be22",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "945c895113e843268d4bbe2df4446caa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7a55474b85a6445dbe7b64960fe93668",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "64412ccfb70f4eb7abc046f9be64f561",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7d0c8303bc064a418d46766710310322",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f73cbc8d256845c38cf798775b109ee3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "008b319e28154a26bd555cfef0f1da97",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "35e89220782d4e948ec0256f5e268768",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3ebc673af1814c92a16122aa35e39262",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "946d4572333645c8884104017fe2e40e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1992492033294ae89d06a0ad953564c9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "223ded913dcb4dfb9a4b8e01567fb906",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e3d5fb92927f4bd4a4fc76c5174359f3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "79aa648f39da4f9d96e57d7ac24ebb80",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3dd67cbd7cb1481a94d74024ca15ee5d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9232fb29e3f148b39f025262d3e63054",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d9fe9faadfda43409400f8a75ed45e30",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2789056f8f2b41cead26bced1e0c773d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "15d3b7deb3664190803387da48b5267d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0d0352209ce14ea0b065dfa1517e57af",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2bc713117ee345bc9efa37d513e8d39b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8641854625564422aba6bee7d26d12ce",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4c6a4e55a94c4b008bc26eacd9e15eff",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8bbb68c6ba8b44dabf429bf1e8ec1bb3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c059c5b3c3694b609edaf036327abe25",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f1a91f68fb8c48fca10f696d32144689",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ff52810926f143c7b8ab81b5b18b80b9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c4e52a99126c465994e73373f007287e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8f7efc70daec4b6d9a3917d171560815",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2e8eab2c79de4f9ea18f8b1a27ef93af",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e7786f03d46c4bc19449d76792b9464d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7e11a4fc0bf2415f8db70a13c910670a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "875a2ac3278844d58e534741499db615",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "527443daddcd408a97665522506af864",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a95d0d558a19444c8b1f6105e1bbb352",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7a7a45596c3e4f19af8478dd49d16251",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "710745a4df354254af68102920c5396c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6d48a68da9dd4f68b97e306e31a4a3fc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0b3d187d847042afa360d4e5a2455ee6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "31e421bad0804e9a969c6dca8e21cd25",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "71850d67162e44c1a862a1a731a770ec",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "42321f4570e14d978fab81530c8396d2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bad7b1f7cd5949cebf35e89d8918c47c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "490eddaf65f145ea83128f46c7454a3d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e0fcc58e755647b5b50072b80f1c2b66",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dee45920b36f4099b203fdf7715ea15e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c32b0deadab04c0f940df01461ab4e67",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7f63b894d12a4ba485e645e2cef423bc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "91b176bc616f48d581e513f0d53117ed",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6759095865ee4c4ca44a0ec5b8edc933",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8f6204f414db4dd1bac9825f9e7c826b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0f5bb01fc1884d69ac4513e139957a29",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4cfbf82b567748ab8ab8005c1ba34bc9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c539596e539044f48b7ef7aedf9acc7e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "692581e86aca430c915498c946a4f8be",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "277f573b88434510a4dbb525c27b7fe0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0fa26e2fdcf34ba1a2b2e15015a02298",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ef7967926c0c43d3beee499c8fc285d5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8ee2f2bb46654e7283f1f90ea173eee1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dc066bc4c7f04893bba0f936cee6abf6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c559789eda944677ab992af026083eb9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b272a4a325434b3cb7465756b3795c4a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7eb4e7eb84514cf2af96aca1daf4a5d2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f4a9b49da7d14753ad41e96e2decff98",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "76034007ef5d43e0a23e2fbefa794ed6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0749daf1fa05478b949200a419e427bd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5167262d87aa4f2282d0c648519e6ce8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "562eac31aac14254bccc5e171056478d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b385c7d57eab44308e5aab2a88777f93",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d688d8d601cd4aa4b04d2f0b495f98c4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "846ce95702eb48ff8c4035df3b566e4c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f690efe752a2425da77d265f626522ee",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "493da89cc66f4fda813eeab429e25a38",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "79e2760e379d47d7a8f2e3f3317945c2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "90f5c22a37554b6b8522cb73693e44bd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "51aa2c7c314440c4a3b4e082cd27135c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ac4729f7701c41c4906a4f46f3ac23b5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1ad90f30955f4b4186b6c5699224e16c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e6440eb67ca443b2bd26cc5a8dbd76a6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8c874fe68cf643e981a62b6697938acc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "321dc05e2c71482e9fc670630b66541d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f42ed098e9d8481fbd1b6282a541f316",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "810f3cc85daf4153879410317dfbd4d1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8b4bc4ca87244e4ebca8f89b52932e24",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3c8c18a1168448e3ac05d7278f074e80",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4d3896f8286443e18f7b40811f4bbd9d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "629e386140f34dedb8df5b7df10d3329",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9eadab90e28241faa21c80d5cf38b51e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0dc536d3c20045da966c506ceb699011",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2daecee78e21440ab53d84e1cee0c482",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2c711beddea0494da6289aa4c70cbc05",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "73a474cca6b446cfaf743a463765a28f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4d2259e9f66c41719be2fd8e40172731",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fc3ea55ab4c4499290701c7b75c193ec",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d13edb249bc24e3486e4f2c8b8612857",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5180b19c0d97429f8dea6e094b45e949",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f171056650f340b98a07f44a94e14883",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3be5629b97e84ca9b52679cc907e6d70",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6a63b9b3746145f1971ca799746ec6d9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1727a830501540bca0d0d7e4993e8de7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ac6997200f524845ba21a823c295c40b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e4a8c1d884984d8aba14208f17983231",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c1a17d6e306349f2a714637c27eead19",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "83b12e0609e84b4988baf64a931a72c0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1c780d5f294f46ab96ee7583d3b51d27",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "eeda4eea1d444119b10b883859233aaf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "82d816b752b04180be3af32da1f77d20",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ad28d0410fc54d6fb337bbde613c7609",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2bad7433660c47d5aed4d2ca5c73bac8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c36c455e44aa4c43b5483a75663f0743",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2853d4907e7d4aafa4cb609a1c04d29c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6e1d51861fca4814a31777352ba55ed0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "da468e29172447e4b0f6f6854c60edba",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "42d10202df7447c6acee74e6e23703f9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bee32ffd4f2c4a59a3ed6d717de3d6ca",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d7602dd4822643e9958c0574fa1e5b7c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e92bea739bc84e4c90aa72642a7604c4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1a1b71bbfcda4a46af9881f61442fb4a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d3adba7516744c6da276a3790c2ecbcd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1541549cccff446d98d18a71e4ee81c1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f902d4ba470c4f7ab61c41d54fa8b804",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b0e28f808e534c8dbf5bda3079e0fb0b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ed4d8f5b2e82430282eafb4ce0079dd9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "45f029528e7f4f28974adb0c2e079450",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6c638a7931ff45c5ac71393e14b22bb3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "267a850456e548408d8687b449e7a51f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3f174902391843fd86d8d3d76cda18f5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "887abfdc4b634a7bb9988c0a5b8fd6e0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3d21dfb768354e13a3e4c80a28ee3bd4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b49b33d404e44bfbbddbaec12ac04213",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7b60229f7a164c16afd89f8452a7150a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8aca6830ee3d4af0b77a404e3e8e7bcd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "519172e24e4d44228d787e2b6d45147a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1a9bdeea0748440c93cb33dd3045c6e3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "24ec68382a9945fcb38ba0f2dc81846c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4de6dd5bb4674bcb9ffa3645bdcdab80",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5789e070fa4241b99dc15168081fc4e3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0da6b89e69e4465aa1d59f13ec9b9220",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d48e7d3329604de6b155f46898371b43",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7173459276e6445c85c18d13c94be916",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d76b5aaf53e147e28759b1047df86329",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7fefd051ec154460a26f008421039cb5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "500db9b939984897b25ef9b0048bd8e9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4aed2e7021904056b64a169c0d82e5c6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1a54e983e58d4175a0d8656cda5cde64",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fa04cb3e9fca46879d8e76c162031fb3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "29199f705f47486a90536b23bae4dc1f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "927aef2afac945a7808cdd1e34b52dc2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "451744963098443ab35bb487eff28827",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "50f742490a514d81a9197ec352948cee",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ba3348019f9d4815b00d2ed588e7710c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d86d7f8658df49a480e05e6d02296120",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "27e7b12c8ff04a95a235a7c7ef0ddcc7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9c3018a67a1b4d18a203e083de3904a7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "55f0467243ad4c44bd0c8b4c8456e995",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a8cd2efff63f4886801a8f30b71aff4e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "91c2074410884508b82e2add22275efa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "32c2fb9d31c1492f8e07f41a2731bd3e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4734057828914cc881cb06099d47dccd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8a76996aef454543a59c27fb7dc716cb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7ff6d6838c5e4b589f5536b88c7d589b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7d32155a06db4a6cb3704d9bb1224d5e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a97e52d660ca48718f56a0063b745773",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e9f3ee215a5048d2ba7421700e676639",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d990f083b100463c8067e2b02b3903d3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d963cccf1da545439a27ca187331b2d3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "53c749dd9d7b49bd9ecbf97b605cc351",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8038f8dc4b0b4af5953151ef53510b32",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8f94ce6ae8a8433fb17f2f504e8903d6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "494db6d256b945d38d9f9eadc9f6681f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "858f95aa811f4015ac1b7b031aee91ad",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6660d357c8ec4d05991ac780961b8939",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b58c6818d95d49999787826950e13551",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "39fe04f5a2ac49d3a3b7dc4b38354634",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4f55f1a55c284d5f838df5463b5e6e3e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "765005179fe24467be56281d0b9b19ed",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e40ab78ab3ed4757922f2dd01f66c2c1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6a529835c5c346dcbbc6019394bce73e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dbccb070dba74af8a80a112c8ee804a6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e373d652ed8d46858effcdf930794105",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d12f143ecf194766ad0355c7ff6419e6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7f200b3facd242ff992c002e3509bbd8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a2e2312f1d794804b3c00fb6b35fc06d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "080667d28b26401287b533e3f75eb2fe",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4f65c807be754f908e569166370610ac",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4e836eec8f1246dda0df66e2676e7ec2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d2e97775bcf349219dc1899e7e1c9f95",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "88162168085749618b7427af9a74c62a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5beb6a5bd79448fb806c03a3e0fd7fa6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9dcf44937b204a8881fdc456f8ca165f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ed6b719d7c484c70a9ccbe40a79f1ecf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "430e6a5337354b67a2bbcc2c4ba043c4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5b73f7a893de4ece8666c78b5c51fa7f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7ec94064c7004b37945d8f38df032ac8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "101d00df6a894c7cb47c4004b0eb61d0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2757b3b00f6643bdb7cb4e539fa19441",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b5e9233f9d334444a47e64686e7843fd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5438002e3410489cb74b10b22dd033d0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9c8007099613469aba60deb997a5c1d0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ea0f33a65a57461fb4e37fe4397d0bce",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "82278fd0e7d84f38a06d9c592c32bfd1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7e6fd74ab668474288ae0a4480b73b3e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ea372582ad0049399c787cca99ee7771",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bd63fa0733504f849c917c240de04b45",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "af6610c86d584d7e9a1450cb1f3c1099",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "643ad15793d34011b83747d22dbd9fff",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "596d0181ed764f98827e1db580baa9c9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e8d665590ef2461980805de07bdb789f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fcdc4a1640624f3da46c7adcab852cd3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1ff1ba14e052462a86540c62c4c0b728",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "cf0a6a2827ee403aa36877fe1896adb9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a09f9263017f4098b285bf8a26c672ee",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ea70be7125e94cbaa84ceb4f92aa1382",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "50ccdb0f37fd4b52a9e64dccc9d26717",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "61463c69ad6d4d08a124979b88f7a837",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8ec415001fbe4c5888ef0118498d5c58",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3408a646bd3b42bebe5544d06e9fb022",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b33b674b97d84078b057998c79c58894",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "edfd96e1d96f490aa84eaaed8ada38c9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "153034711aba4e91b466676f81e030c2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8c54d42e8d7f49959b3eb9c7b5cfdd00",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "85870f5cd6c64db2b3946f1205292da0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9d66e75ba8cb434ebb4278f541b22036",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e766ad5d15ac45e3a8da625d7b257ad7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4c495aa34b7e4a8b8c0287235cae8b8b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "74f6f42cea5a419bb8287f55e9d943e0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ef984ef2ec664e8fa26e7ba022257c10",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7cce32a6be65444cbab26b86ffd9fb21",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8212d303696f4da29ddcda4d368845ec",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c17bf6579877420193359aa6871f2b61",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "481de8e8bf24434ca4e5b5f2e9ef5346",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "960100bc02ee4e62a311fbec06bd380f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4ade626910f646aea7ef9b3781e8e2e5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2636b6c7497546a89618748ca808a0b1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2db1016edbf0453da6abbeb6078b5120",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1c1caaf5496946feb280ab57c11fb5c3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c4ae68517e47400ba784faa0cd5d8e0a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "44f5b7ed08d34e829d2eefbaa0b0494d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ea9eb157b30046b88c88ac1a7307823f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1950b97806c74c479a2542fe1219a509",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "61287a6dc3c2478193b71f12896ae13b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f1100b4e4ae746548da6938f409caf17",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8ffe24374a314023b6f8384d43c0d284",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fee842071861411583415428c8684e7c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dbb6410d6da34f26b1a9ee41013b5468",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d574858d34754a8cb73855516bc23b4d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7faae59526b5414e985c15e214074c86",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0e0a7aebd8114bd78a761fdbf77a24c7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "40418eec61ea4e3c84c01e582f0266d1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e8f49aa4302146f6b1446911c10cf2a3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "951bb0fab497458c87c8a17f27abb5c4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "21de0dffec384694aa7471dab5a5894c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f8d264c7e51d41df98ff4b606ad6c59b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "58a6a8c3eab942ae82ebd01f7a8b2804",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "abd119464f924c399e3580ddb879f6b0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7fab3b37f65b42538c87623fdbf64589",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "37fa6c4e28f242f79f44219cb41056f7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3517cf1072d044b69075973d219ded3d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b21d6f905e4b4480acd297e7da9c267a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "04ec237aed4d4f389603f4476eea63ad",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "415d22388b324af5b5984d548e9f6146",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6c8b68dee866464cbc48df6f8b4ea352",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "25dff12f72ab413abbb088ca03539d1b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "767f4f4a80874ba1a793f4ad3437ca20",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "95fc86d01be74c16a9cf144528c9a66b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a8bb5a57377748408e652f025665a4e5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "46875e4d6bb04a67979e78427abedff5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "129a69888f124fafad5aed7a205a2c9a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d4932f94b219479ab68d3413f229fddf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "059dcb608a2444beac94a360101b6e69",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7c36605f0bd846088add43eea3c4d225",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1c15b3adb7ab4dcb9579832a8843c34e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9b54f1742b1a4a44ad37b3e20c400cde",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a4881a862be045168af0c6fdad4a3291",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "edca1e50cfdc4ce59a1ce8ac79350716",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e0955dec27ba4a239f9d38d5138f77ec",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f31b08a40ca64775aa69fbec940b6916",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9970d34db6e7414fa57f17c175b46dc6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5635df9543cf4da88f487ea9c1f286b4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c2714018dae8452cbe71fd5df928ab28",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d6eb66cdf52b4a8cb6bdf8405df36666",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b2b44b44775f48349d79dbe8aa5fbcc8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8e9f2b64ed5e46a59cb0e53f1e4062aa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d7440046f0ae484095fbdd32e0c88dd7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0091330af08948238ee6245b8954aa1a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f2fd3eb920d34d5b91e3cdd1b18e56cd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8ae4eadfad534ce09465da151739b991",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "12dd555b7ff24540a8ebc41b806b6c13",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5fb0e06cf65c4a7db60314c153858777",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "05e3dc46d6164c78adcc8f76a3904a67",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9011ce5dc08841538f6c26ecd2a72391",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "95dd7ce24d0f42499a55606c6dcca7ff",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "374b046896ff4521919d2bf66a2c4feb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5b617d4a7739480c88d6365805fdcc87",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6bf75d0b57664db0ba8e461e2a7aa9d7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7039bbbd4a6f40b8b48c898c4a47a85f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "66e76b863bbb49c08960d0b811f9430f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1820961a2f7341f2b2d13ffa4443548c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "826aa91defd94916a90857866fa0d900",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "db49343b36c44ff290a9b912f1264b59",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7708b92ec6794a828e808aa98c2349b9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9fa27afa7b2b4eacb1f9248edbbbe25f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d7f56571d2ce43fa9eb09b9223ad32f0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "da41cf2c808a442a89373d0b9439599a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1518e4cd4778489f8dc70d44b18fd9c9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "400ade376af842d6a63d374f180c42a2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bafe77fb53b5453da78773eddd395d93",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3a10c324ff4b4db786cea095a4f636ce",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "36be3dc4180b4c79ab94b90093611789",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9eefdf1555ba4b868d281fe6b0430983",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c6faf4ea343f48fd83e7961da29c067e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dc5c8016a8354233a0a85e350ce6aa02",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c2651c62824d4e79af29ed0df9b751f5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fe0d720f78d54d7db70664490013718c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8abcad5a2cb84ccea2775630da044af3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "60805b25aa2f452c863fa8a01a6cb822",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "78c0a601deb54fd1a5be292d9908568c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "033066b3f5f24722bf8ed8b53bb0c1cf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "58552fb7aac3480a8ac75e4800f6049b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "72ce8296d4a9446e8e0592ca3cc0d7df",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "47603dd1448e44608c237015af5c83f3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c547660b427b482b92682245b3550a74",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e9a8999aceea46d38eb536b3fe46159d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e18bd6a8cbfa46e0a2d92f5ca54e0e7c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d5f822d990664ba9b733426614879bb0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6e1fea0f39bf4057a97aa15a0d56ad7b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bf654748e0d8454991e798d8354a6293",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2fbdefe489fb4b9fb06c34a7de37ed6a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1b3262de69b3489c85e1f46b5af39a03",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8ed2ff010e69471db721de38c55bd63a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "10868a945a7944eb8bbccdcd93dbbd8d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "efb70c780fdd4d8bbabed5e0b41d1118",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "45037f5a57014bdaabe5a3db5d70dae7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "cc7a7b5ff7dc493bb50d8a73fde509a3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9ac2689c0d834497ac87c05d720b3531",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b547ee76928b4df294e787337aaafeec",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8b6bc925ba8a47dabc3daa7f1b8bba66",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6638f5368f634e38999894e25f059797",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "091a28b6b88749ce8c9577551ea81dbe",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "74adc08e223d4ddd9556a15a79c0662d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1904c2e85fdc4d988274a43d17aff378",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "877fa4954c264ba48f3e9146c6d63e79",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "391069f55c984156a4cc117ae77cbd77",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6a6f38d06f2e457db2e26d4f19077a35",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "de018fc57a24488f8930deb7f909b077",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7ae0234d2c3648eab398c85b9e9506f4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "48e5152fd40d462a9f5c2eb41448f508",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d592b3ee337c4072849e9807c334ca45",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c96489e110a347ce8402bdb6a4b2eb73",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e7b465a78a8c4752a70c4bad85a95489",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "78a86195fca547bdb249c7463f0216ca",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "55964a5ffde946969011a48a5ceb7153",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0b4d1011a04d44ac95bb2ab4d7b0a21e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e1e441576be640c69c37a9e53a62803a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0c8fd024938b44e2b142b6a51ffcba7c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c05bb9abb06e4b6cace4b64bea8177d0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "eb8ad98d33b24e83bf4c545976c8484c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "56a8208e2da5496c9379f17ddba6458e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d9251af2857441a1a6a07164f767e4d4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "148a4c7c0e244549b5fc7f1378482d6b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0e27102512f84f2595db9f44384e3dcc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b3121ff95a3a40d5b9b697bcd201f699",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d541c0bdbbf64b58bf3f90cfaa4786b9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ec45dfa2d2624456ad19b422e138cad9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a8fc92b7e28d433ebbb1294872183121",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e066bdc74d7948eca1766d7e535a42f6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ae71685a25c5464c936a2d26107fcbb7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4aadde2cbf3449d1b62714fcc43eefe8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e10fbd3aef204c449aa413a548673585",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d52be7b57b0f4f208570037b5a962e1c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c82d26bf14264386980ca7bf56beba9c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f2b42146f1af409885d24fcc1e6fe3c9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "883e742a21444b76b52ae81aa3d57517",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "212055786207431b955b315bf89bb399",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "72c63b9e755e469595d53cfa5dc18d05",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9c6e97d66a734a12ad8532f71e6db0fc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "42872301ab004ae49ae68552cd582cfd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a85fb2edacce4ca49457e4b48bbaad53",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6ae438028f23418991e7edc06a68928d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "236b3b55cdac4fda80369f5be07703f4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2ca3313050ab4ad6bd1c01ca0f51e6c9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0cb7778dfd614569b8de331f8902f7c4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1057ed8e9af744c79bd3687ddbfc6f96",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b6c982efda1b4ff395206b45fdc8bd34",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b281a63cceb14759bcf2898aaaa65756",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d90bfb56fb1b4bf3942aac009145792c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5d7b52381eda471590604611e184903b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ec4c038b8331426fa5c428b104108294",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7a1a3f172cfb4cdc9835cade94cca5f5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "65fdfd5be7a7474faf5d8b93f2ea2413",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "957d9ac5b703462f9ebf392b647b74a7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "928503b272c44dba92b7ae15fa713b65",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c81e6ff0a5ad4620afafff4865c66176",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4ad93319280240b2b56825df07e19505",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "11e70af4d4164fe5a77a5863c320ecd6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6768a6f05a9d447782b19c78a740f817",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a01cfc43856e4b83bc2b318b5fc3c003",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4ecf44a53884452a8fd50eb8e77d2201",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "942fb680818140d395772c16a70cc274",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d8ec9e4092614ebfb92b677a74dfef03",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "160d919d3d4640e188ee0c9a72cf9525",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "29b6234b679d47a2a9b3eb739173b183",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fd2b475c7cf54e2bbd3c0de02adbea4e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0b468e4927514ea098fd315364abb3e5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6953cb6aa6aa4e8db13ff6894402b932",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "593cc40c9ddd48f4b9080f559be984c8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b6f18fef756648a1ad18f7e2a21bf808",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ef56489e4e424b1a86bd9a8543e833c9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "83a44dd4a971460ebb50fea26712cccf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "afa090e16d81419f8dcde34626304f93",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ea3bd703289a44f19329f062ce4b9a48",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ef4499c10f6440f6a10183b9e46d340c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "56fcc3b4c3e345dc9eff061d5e349dee",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2611ec277a6340a4a67f4050eb11875b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a08b1fdb58114307acf6468f019c03ef",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0ca17da54070419aadd51f1c6f6c397f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d507ccea533b4175ba96ccfeca7fe2fc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5a151a3d99874131b93847c835909e48",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0bc0911843654824a6496db41f9bc5a1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e3520f3e4c0d45f4b42a2195a4e5df0c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "75160b61cfa949de885b0db95bd6a9d7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "451bda8bbe96411b8bdf0c3abf10c37a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e64cfcb8f59643999dc0ca1854e1b958",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "cbd6455c3fe54c65b9177ee3b2863e26",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e29649afac3049f6b06e9c7add85467c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "76d579400c0f489ca244d9dc43f1601f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "74dd00149a224bf8a9fdd28bdaa31686",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "60eba44a3a3b4125bde6d398112a8329",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ca5db3fdb28e40be8c1e7c7324018e48",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fba3b7436fb347dfbcbee5de1b7d5b08",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f82bffb1297c42a49328c8510a92f888",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6d907c2c0a394433b72d625cc83b6f74",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "17e245f431b1461c9e767ae1ecd2ab7a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8941bbd09407437c944122ae76525732",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0d9841cad0a34cac9a9b67dff5196648",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0ee95b2b56c74aa6b47c7ecd0816f44c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "813edd2d7b9a4e299c5f9535f59e860c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0cec9458b0174396a5961198c6129bdc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "23bd94fdf5934b758320d254a7603176",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "267ae1d5085f448abca960bc03604771",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f967983fd3f042eb90cdff62147ed5cb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ad85411239094f70a8c428619890ad3c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "40ad6f8ebb7a4c0d8bd7499d4b96229f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1e3dfd1733934589b9b66947dd9b1a0f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "befdc954fa034050a54b4fe2eaccfea8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "90625112706a41ad879c2df65a9a3921",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2fd7585bbff74afbb7d2fd50cb7c3428",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8292c9e3ccb744f19a3e78805a0c9cb8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "634ea2d1fc3c47479a2f839275d0ce4e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f19f62afe31c492695b50606cf7eb364",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "42f68cf9a03444ee91db8fedc0f8134c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4b3dc4dbcef142bf856611079715f159",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d74b979ff02946c083d647325e4565e5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "eeb67c296978483398ec2da2ab484061",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "963ba61bd0fc4e778c07f28179c152e5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "066843e4dc20468a9205cf9fd8e0ea0e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f275a37c379d46a4bb4ed8411fe5b959",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f60003cdff8f424d8f2c9aa4a511fa45",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e9d737e798654379a809b693a1141023",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "60f29ba787c24cbd9ef4ccd922665936",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "766bcafa711d4c6e9363fc94a0b3cdf9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "11a337e4d8334593a0a1163de6b6165f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7d139685c2294ce7846f3c8991afa5b7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c3fec96075e74327a48387a5832ddaf2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ba5fe5583a964dcf9e41ac00076bea0d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "78b2268c6d884b988c27ce4a132e07b7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "640e26ef46564108ac5664cca7606791",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a255853c6438491b9127fa51c2431beb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c9446b665f0d4c668b05f52d6edde79f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1df6c1040be348abb1f6127f608d9fab",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a0311a0bed834130aa6198800037a684",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9f5eff6079d84295baa6b491324a7d14",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "66b91c7d5f334c999ec75448e472c15a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2544b4bda36241e2a53e858b591b455b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6bb05098746440a1b3ea5e5dd342be34",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "30e6279d8f874e919c26d745d84d8113",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b8e5b962fcc448a7ade07142226c1db6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "81be96018b0e4d3ba8e2df3ef615f3d7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a84564534a20492fbd75db98d0878fff",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ca17f8834ea04f0abbee87f53e38942e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e3f78ceba8d340608f4fc17fadcd9664",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "27f0770327784e89ae0609ab294bde64",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3b8bcd77293f4b2096b1265fd8e5463b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5443121cf4514709aca616a464b87f4e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dc17184da81b4a34a750f05539abc144",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "491c596f7722484cbda75ceee8ea6997",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2a685138e66c4cd296609294845a2b6e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1a6dde12dbec4c7ca7b3646c0ddc7230",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2324c6bafe0c4937b56b9d65a170b0b2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6964220b291a491ea6324a20b81486b4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6b2b6dab80b44238b0490a90427f101f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "68324188b54d4182b3c80d530f51c6d0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "710abdf922c74d38af02335917b1ab35",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5556b4c2e31546e284d19306a7afde7a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d6529bafe0f649cdaf495bcfcd02ad39",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b6277e06301347db95e545a98a586e21",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8dec216ab1da4688875730dfdb5a7a0f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "30135289a42b4e5e9d24d736e6b15c82",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6f7843944ee54e03aa65a0d7c53a9100",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "03a0e152561c478fbb6f902f89094cbb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b7c14182076e4090a409ab473c9bebd4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b4aed5ca8b9b4a97934f71e3cdb8ad15",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "95a17c2031734fa6860ceb8ad22367f3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "95ed181bc3d64b96a943fa4447fe8e0a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2e7b96f613544a6289b9ba1890b5fa71",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3dbc5ecfeb6c4d27a10a8eb37ed4fba4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ae8cb66b031540c8bb53b1d3fc871986",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "54918d7c0fa84999af17eb4e02f6e935",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6045173b18034cdab9315b2511042e29",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6bd0cc04da81436f821cd317e26003fb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0eca7e702cbe497293310af59647cb9d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f0fb918724cc4660bc0b6a4d3d637c99",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e55eb3f6b158400899776d5ba9841690",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "122f9a39f5234cff88efcc42462be9f2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "992431719d3545cda207833c967b2a27",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a806527e17644064bb63559c274713e1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2b199d03fe7d49e89a81b3323fcc14de",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "69b0e990bd7c4a1a9ea9d2696e95f658",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c85f5d95b00b46ea9dae8f363eb802d7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "72e88eeda3574ef6bda9ffc030342cd7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ce316ccf637b4dc58f68bf5893fcdac0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "df05c4a6ce4945f78dd724be6e7852c6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9575de938dd24984ad35d87a2cbb0940",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c47d1ef9b6a445f68eed1ec090f0d074",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4f87052b085f4baf99d61ec276bda553",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b253b49533f84d2388a84f21136552e9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6b5323ad0297412a91a8adca0ab9eece",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "95669226853f450690b793cbf92153ac",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ed3edbb0db3c4818936d7c2d87509c5a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f5e930b0b84d4c68bf6de8a63a865e91",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d766a44d35fe4a7e89fc5a392f4a4ccd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "75636c6b4f6c4053856eb8ae7404e012",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0c6e776a2881475891cc553da6918f63",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2a8ac475c9f4416eadd5eac7b75e0a0e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dd7effbf0950432cb566b79d4b2da45a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "961ec237d55d4d2b983e425a5ab11975",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5181f18d6a164d54b1e975fb4ebd614e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1417a384ec9a4deea8a5f1b96bd4235f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "30751c7bfd644fce98beaa0d49479fa4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "254cb6c882ad435699b8a9b669635b77",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "31a26c1d854f40cb8750674a61896ed9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4c05413f9072456ea74b0d475ebbd143",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0e3773b197474bc0b2c72f1c31e060a9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "016f3e83177e4e2abb9d80ec254349d5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "763651dbee5a4b33a0477b21892cc566",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d273e866d37d4cc3a5002a3d8e8c12de",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d2599c9570e14f38991c2a1225d6a4a2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a3d73ba1808846cc9316dc34a7c8dbbb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4dbdad1cb4704fa4ae88515e7fd8a145",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "21a0c3cea48e453797028b77b0dfa556",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f2312b2e76e444c7ab8d10248e968f6a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ce16f71ef19a40ba94220e8d0b6b1e1d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dd50ee6bc36e428c8a2d0ba8cb5d7b8d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "854ceec357a84881a5e2c562ed04e201",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "954bd1b90e904bcd9593d9e36106d355",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ec58ffb3c3f04dbfbf7b7d28bd155fec",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8864a499ca7b4af78c020c16dad0a6aa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "55e6053e5eb44781b2d199ea32e2389f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8f69156990454023b35bedc31954df78",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6620f2b71a30429cb3c6169251e318d7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7131cc8416944dab872263290381b63f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e1620bfe43e94bccb3babb2cb56ab2cb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "de3c37aa32134cb3abebfc1838779a42",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3e95543995d844fd8700d2f9d14c9fa2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "846d3f82431b4aeca3c4a2afca77212a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b18dd05cefef43449d74e7a9c8d0a4d1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c5b10bc16cae471c9699c7c183f4c430",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5b1729f5633947cbba1991921bf5e5d5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e74f74a72168441bbb692cabcbb8aad4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d64133615a8449839482249fbdbbe813",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "182b8d1f6bdd40bba3703af80822b569",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "03e160c46f45428d8b3623c5f63efb5a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "25e0f0ff2e4c460ba1e50addce185328",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "517e6967c77f4e31bc1bc5ad0a69f5c3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8a843ad065bf491eaabea99d26dab52f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "799f10ba56fe42b99b6b60575125f1c5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1068120da4b9440db1526e5408643d02",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4ababd69e4034e2c8332549ad16ec854",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b4382c657b5e44fb82fd875af2e1cb5b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ce7233a1ca7a40f8a5cb1b8b3161b4cb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "07168812d74041bc9eda1c5c226ea71c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0df382718cb64c0ab395c17090dbe7a5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dd34da368e594cc1abb20b207a89e0c1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8f8ce0a08dc74e8a8ee76fd2b9085bc4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "830bec4da67b4136ae346f991900737b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5285e651c4ed47daa62a4731b5cc5fe1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e70303a942a944648e2dcdd0b11b59ab",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0539c87536054272a113982eea8fd62c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a3e92969eaf549cf880534040827d95a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0f5b8fa005d14e9c9fec7b26945d8951",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3f9fa58a297344e4811f5d69b518bef9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c7d452857f6740bcbfae9af6f206a6df",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f2c03573cea44852b17088b3f288783f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "526074b97a494207802ed870ea5859e5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "80a084fe3a8a49c38a92103d1d93f4df",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "85d9a244957647e98f34b76e7b14309f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "210c66a4302240de8ea648d167ae3428",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1525de1ec51d4fa8965893580336d121",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dd7ced3cc7ec4ff1b8450cfe079ef522",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f8d2d26ee10c47598748172026090c6f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "536737529cdc4a3fba5f7dfed04724c3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dfcefb4fe71f4d0b88858fd2ba06e7b7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "686cebbe6f5c44ed9abc05fadf260a13",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dbdabb33ecc64fa19781abbe8845d314",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "80b8bc1f30504bd8a380db3d6f5949ee",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "34a90187dc864ff091055f8c9181a0e6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "baaf7778995f4285bf38704253c707af",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c68fb58a1b3a43ab95b0cfca7da45c14",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "cdb9a62e9cc44a6bb0134261557e2243",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "73e1928ad3544fb5b4a9ffc39b51c419",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "17a3a7344b4e4f2d8092a1b2dd21fe7e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e4c8cca5d64342cc9c483f37a7620cc5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "904fd7a18a5241168e8eccadd1e72178",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8c41a2526c3649f595f3e2fd57de26ea",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6d903eccee78439799aa422f3fa78ffa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f752510689e64a1aa48e0097a53fcd74",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "896f7b8772204f54a4c24db28f648562",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ca446dbbeffd4b158f64490de1a6a47e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c66fb39e4d4442aabc8214dfb2683b94",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9743b99c029f4d519bea7cdc344a3b91",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "97e6db2b97a142589cf46832d4cfe9c8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ca85055cb73b46c7a465dd86fa2932ee",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "40960c501799487499946f9c24cce870",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4f42d9ad1a064abfbd8211597b72e359",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "cb4c6f61b9014fffb46d6a0a92289aec",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a9dbfb4ddb1c4b1594fc0df8308c6006",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1408297a4c784e4f8535932468929c67",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e11667b66e0c4e74b0bd4d7060089233",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6382651df87b442eb6b7b09bffff8a3c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e1cd349cf0ad4f809f3071582eae99e8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6067d28bb0b243d89fa44984299e6829",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "30721fb12dbe4eb7a3bbcff09beabd5f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2da650577f7d422ca17cef0f09c9338e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b4e15d4b3c06418a803f27cf71737f82",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d9b542dc5a2f46719857c9bbc8bef233",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ed70500ef9b84b3990619637c4f484b3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "26e1d16ec0f745929b021e5d369b553b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "60309c2d964542fc9460194c1375b1a2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "00abf2eb284b48d88ccbb1b3cbce9e85",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "85bb06e982e64526937b5b36dc6e3cad",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "876dc95454fe489daa905ae9bac69ddd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6c12dbaa17b242109f42f8a85d26e429",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "984727968415410eb71ac21ba55e0f65",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "cbd2ebc2837e49ff8d00f1a8d6131ee7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "133da57cd60f4bf3b435ed7238e4cd25",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1c77de0b73764f9b8108ca173cd430a7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f115e7771c8545ecaa9af3e9c1874220",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a99802407a74485194ecc5350c1d386a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "58ea6a83da8744d7bbde63d8aaad6427",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ae83352403bd48c1931f5f10c5c3e481",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "eae7decea03a48c2a18eb82479467bfa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f1f5e2d4c1cb4db7a8556135ab904adb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "291dd5dfc0fc486a9f98cadaa1ffb8bc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6449d12597824ba6904157f9c8bb01c4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "181390febb0247efb2f58bf70bd94bab",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "413e627254f442bc88aee48029b14617",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8b3e81cdf65f404e85b8fbc0794f6c15",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b97a35a06cbc4b3a92d7d3e617b68dbd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0ae5bc772d364806af541cf0523f019f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "05ae223754804878b75cf826a84ad405",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "34feb2bb444d4fcd9b3f99c8a92b0ede",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8da24832eb9d4b45856644d5d976c05e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "59a8659683404aae9af945941d03a960",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5ddff365a4f94162a4ca0a0e6ba87094",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6a5fc3aa206c47be88285ed5f341a1c7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2a63437f337d47bdb3d70c2dd5b53d2f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "09b0e10a9e9e4e28bcc453dca71813ad",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "29878c2116b842009cd56998874deaf7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c2e46153dce243ce82c26e3806f92341",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "51c97fc8e2f4416bb51d2efed3bae65b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9b2463106e624f8f955eb901910320f7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b7672788fd0545f4bda836879c9dfdca",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f34dc2ad9dd24e82b4f9564582822930",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c0f2cc13b4fe43c7abcf83303a26e695",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3264b3b837154cc28c41c8b9c05623c7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "10329cd6f0394ff4b0c88090b00c841f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "37793de0764547db8a53cd6e8a6d8057",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5ce31882cb5a487cb7b638699f23679b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fdc86b1ea13c4d8d8e472c6dfd743f71",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "edde73c861d049139394768553baa8dc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d927e387a1614fce83e6ace4b6c7ad42",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c7fcf5b9e2aa4aa29b2fc59f0d833a34",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2939e1dde8114b8cab2e599ebbb7fa52",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "95bff6be73f24f5eb55fbbbb04d6a551",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b517388bab9844c981eadf90d3a0905d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "900e263159be49719bb25ea789dc9bea",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "90837bba66ec4ebea345e03eef3fb8e3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "23db04e2078c463cb9689e6c6d5f31ab",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a06d5266681349f39d328351f213788e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "197761f937e04c7f9fb90339bc8bdb04",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "383530cbd59d47c6a4c35b2d64b1e38e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b31d9a9c2aff4106b27c59eb05e4d537",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0135a18b1fa74069a5d0073adb80bf31",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2594df9c73fe4884b5f6542ddcccc246",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9475ffeec9234edaa637f654afffb309",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4a97ee94a26044e0bdc792ce476bf4aa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c78efa77989c4eb4a4eb7c70b4e5e67c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c9a5feb919eb45c9b5093effb49c8450",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c94a6c28e2064e8fb53794633e6a6719",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "990b813959b74c6782ffb78fe27e2eca",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6fd736e171cc41f7a68b643ccb5fecda",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "aa2c976bf5224d3db42510e162496c73",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0ac351e88a9e4c83a4a4341109b62331",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f06a718798954364942021f3a912fa0f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a9ca02177dda49f98f3778dbbddd0254",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9c0a480f04c545299cd298e1a5b7adaf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1daf3868d4c343a68749b116cef14b8f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "22642ccaa6ee4d1bace16de9a528cc81",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "afe9faf5c2544290b35ea958fec64f7a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6b7a7065813c4491a03f6ac4cb1cb09f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9501fdfe92ae4905826dea36c15eb916",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "061377e449014a9eb205e2edc6ccfcca",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b4d7443acebc4b3babfc88a015fd80b8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5361b8b24f6b455ab40960012942788a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7d5e289d398e4d9bbc50684e53249719",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fa19506892d04b72ab0b1192ef77ce8a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "aa1d3074b82d4b0cb361339a791aa737",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ec85c16067a9427bb4f579e200055162",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0640b8905d94419597986cdda81df335",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b02dc065b4ab4f208a3345766e9f565b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "657550764b8a4fc29648b9cd9e2fe145",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b33d76f2acb44d72959cabbc6a20002a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "066460572e7541a6915909f6f9fb4584",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ce8fcc79e6574b55b5240490ff4e883f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1618b3b7220443f99bdc4e79bd04ee7a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "797728ce6dd74f18a66a344d0c29cf35",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3af815a7ba1341e39c769e66a256f73d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f402e949a1454193bec685347c96c109",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7422a06480aa4cd8bdbbfcde86601ddd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e987373e3e9648a3b44ff1df19992f18",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2c7988246a0340768564db7f4606ab1f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6a393a100816423487787184619f9080",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7a0ba36907ab4330b92925af6f246dee",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "16f7fa3df1944728934c8751d2f15723",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6b5f5c3962034bcd898c14354cf4596f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e3c0fa51325a4e7b8e93bf1ef4d7c701",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "24278aa0bc3c41dc9aa8beee5cd4fcc7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2a975fc96499453492589606beaed1a8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "96c7378c17064d52b7fca9b2cc0d4864",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c45ea18552664c13996a9dd464958653",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bd9d94030cec413087a67de581be0880",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d846db37b3aa4b909ba9ea837631fd4e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "70964f8d2a344c9d9b6f008ecbf19290",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e0c9b7d424e04b66862804f2a4060b09",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "36e821f60f0745a7a2da0fb6103e065f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4259aa74d5c44f4a8608d6ac9e337c32",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "741c5bfc01504a7bb1a4b9237682348f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "681af72327ba4989acde55a9e019d89b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ea3db1f3d95d4a40b57665c434a937e4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a207576b6f634776a3a95d8195c3bff7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "53430d9e0b5846aaa7b8d05169332cf4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2048a76cf3bc42fa8382cc8888a41546",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2c1e6050e8c04d6f87594f9183480b7d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ae902e36423b4503a7e4f76d29968d6d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e77252b1a29a4540a5a95dcaf91faecb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e7ab4fad2f4843b58d707542e6b1b089",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2a09f5f52cd3405f941dc3031e593d14",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4d70d374c3e14756b8d2e7b5b711772d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "31ce377128d748d994ed2921fd0aeb20",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "81966cde7ba84e0bbb0fd7f5f20f3bc4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a99689f5695241f59e24d87f22048d3b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2273092be56d4804ad9dea22ee75ae5e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fc0832543c33461e832190b89345e048",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a9858afb62de491297575e9fb8a1003f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "268ad73b0bdc4100af0214d820d86f77",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9bfc1542ef8b43c28c8b00463ea8fd27",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8434cb20350d43cab7510a333c33501b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bb3bffd0b7464457ad2338ef06203c09",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b3d2572ca4eb40b28b523130446b2b2a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "864a8aa2cf7b4dbab5848ce732e7613d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ac1d13ff76244cebbba1654993048767",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2ffd213b4ff644f28e99d06bfd862b65",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2c34e51fb6f143e591c19b2af3aa7404",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3c8ded6ad8ec4705b4130b61c1c49e1d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "979a246d92c74667a7d77c65229c4afa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c39bb9637985461ab9a4700142dab5b1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e49d6a958e6042238db1a814c7c6ccbc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5ffc0a905ec944fd88068f78ae36363f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "78c9be880e274f70a092bdd1eb37f3ca",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ea737046cfab41a286f22fad417dcc99",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3b599406c0cd4dccaa7ff14c4b0268db",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c8d416cd966446788c6bf64cf12511d5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c8f7904c86a74ac28e0b254856921fa7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "eb6702ea264943e69b03de2f614e571b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e42356ea28b14757b25f4ad40eadbdfa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "36331d60c4724a1c996d87e29c612031",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "61f26b163f7e4fb9bd67f91a3da07c8d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9ad6c903d2c5420abfedfba328791a1b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "016d5a8d7ccc44499c579e587b3b339c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "63774f6ba99541cfab110a41d8f92305",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fd2ba98324da4d59a12965135ce9ac66",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4d917bd12bec4d3b93313bbf205a743e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1dd91c9ae48344e99a60af067fc64b19",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2987f97925cb42b6baaac9449e177097",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "536c42dc62e240049da69afa498277fa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3ebb4c82554a4f258a057b8d0bd64da3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7d4d5842bfa84689ab83b337a8164ec2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6604de2d9fa54dffa69d8ae19afe399e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "80a630ae032a4463bbced2c3f1030abb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8367778305974c18a33cf2c777e3dfdc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "58be8173dc4d4f1796527e3b395f9e21",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bfba00c143e0481996e1de210d1d4b91",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1c72ce485b6b474b9e55be7e8186042c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1dfa85786f974db6b9bf825b952b3e2c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8bab8d327fe543d385528070b7b783d3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "39223689e82e427b98b613ab21a13dd6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "82b73066d8a54780a7453b8711a303aa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6fb6f5edfb244151a278e7862380f575",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4f9a0acec7de410b80c0ce87648fcc76",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "550e05bce4074d9a8c1119c34591d879",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "414b0bdb09d3447e9f21ee05b8b99809",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7055703059d24da4aa4141f37a7b4f3c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "426f065b63a943a4a6afbf5fdb8db187",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b6cbe938d4e140a3990a0cfcc4b036d9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "918283b6cfa0448fbed12220d974c032",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "21ff3113e5294759bebc074d3480d082",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "01e7510e99d143f5ae370a6840e7053f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d15d55ba488b444eb264f5138092b332",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "78dd598152d948aba83bcde1a7f10072",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "68d2a1e6edd14677a5da96924183b23e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a9888c8e97774a89b0874d470534b1a9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "127c6b4170b049bd88a1ca9d94347c63",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "436c161fe9314f65869ace12f280cc17",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b82afdbc431b4e96b2ecb661b70bf22f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fc7475774c5a4574a81948913117f6d9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a25297071be1498da68df6557dd42ae1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2a29682c1c3a441f8d5da608efdd9039",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "35d65dbde7a1483b9fd54187d2f6fc62",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "554da3574729435e860519cf30638f8c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "833525f2a6574a1da44c683206fd431c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c25ffa43a40b473da6506abbcc97f454",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b8aea346752c44ab8de6af280f0fe46b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "67dc808d5f9b461c8cdfea07323cb3d7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bedeef5d47a640c9ada09ee92d76646f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "54956fd7504142eaaa2eb64ab64e5245",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d5aeffe54fe0493f9637aa604a6d6e10",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2c60223b13744d9285c572a2e8da333c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "350690ba96d741929c6ecc494a898960",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "752cb9c14ac1442dacab5219830b3374",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7cbe8de11dc24c0a8580006b927842c1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8a9b88c5e3bc40a6931043fa5297d952",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "54747aa51df540f0a1bfe6f313c1d6c6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b147b044ec3c494ba65b678b529a1b22",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0600896c9e6b409bae554e4b75d399b7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d5b46e4af7ce4c3094ad45957a98ac21",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3ec5c2497ebd464ab2d2b5a149e9e778",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "db8d3ba98163435cb05930764538e0c1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "877c7cf2a5e34af2b97af1de1d636a15",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7d6a0dbd22194afda7a7a5403deba69b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a0a742e4616f4d07a20851c138087874",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ee42e54d7dd246f5b0c14905e6c3721b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "afd57ddd72db412c9badc744d1be32a1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5a463a023f7a4d2d86a3c7147cc2652c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b56112e9d932408ea99be643761be838",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d06ac8208d0949d6a8cd9ad3f76106b4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c18248a6b2d74abc999a8ee650deb13b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a1481d1e697a4fafb75fbf10a02a9428",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4562b5970f9044b7bcd7671fbab4011f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b78057eb3c584de49265411c3e3f9b2d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3e594ec50f694650b694d0e47881852a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b33f5a219e944e0ca45b79682b3bc3b8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "12e0ffc4dfc24d8c93792641ae4b35a1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "334425a6a8be4698babea637e67d4ebc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "cceffae9cec84504b002aa4dcda69285",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b3cdfd472b184f569e72536e3546c43c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "70e967a5edec44abb3ebc14512d34b59",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "13fe9ef5aa464df48b86308ab5556400",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "788f6a4f7a3f4f458cf7c8e254203a11",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "41a7e1dd2ba2468c981d4ba7f64148bf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "341f3b2c4ad74925bf14e94c068251b9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "869dd130a5a0437a8d6ab6ef993b494e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8bc5c0a37df74709a573f15e463b9120",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a5de38af3e474406a947833e3751c017",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f0528e9d72244b089009ed64c8dcbfa2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4ee8225f379e45a182ab2288e4eaa9ed",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8beb529e75664669a1d38cbb7dcdfda4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3d8d6d3a3882462bb972f4f268090793",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "989bb29477f2421b96a8ffee1a000488",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4f4d2b19858546bfaa7712c712f254e2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "cdc00bb6b6fa4d968dbc0303d2428cbf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "97dcf76b813a49d89bfc89d2bf628926",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2e9be7e780de4745b3d522144f820db0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f6fc832dc34f48b3a2c5f214060d0246",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ef1437c4edb145d5b8330d38e2cedc01",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0cf3060efe4d4cdd96ffb190ccdda81e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9ec43768d94b453098da03e5c01e4f59",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f34c17abeea0462492de7d5ac42f1f11",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "057656cd9eaf47e6986bd54c3958cfba",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "784dd755e6004b48a58d93812c253ef7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7eb8910ade6d4c5f8be07389e58292c5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ef904af89c5e49109535b741543f8d10",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ce0bd71f78a44d098a393ebe5c6e1c09",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1c3b28672b3b4b089b0736509d4b0fa6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7f7483ee2f234eddab3125843612a406",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "498b60261b2a4b009b907b24c909f828",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2b5ab9c80c334a439381d12e71b80047",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f1978d3b0ebc45c794f42361cb231067",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8a170ced4e2f4258bfa3fdf30c936709",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "958cf98c998b4d1ca70fa5321a33f57c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "76052b625dc446bdb60f379ba6a6f2d0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0d733a4f22744add8db1e89d0914dcb8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "59e4a1a1d7e449119bb9675fe0789076",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b9fac3d05f734126924fb00aab7576cf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e12f9a68945d446ba46ba532f9873bc7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a132d48734b74684bc9a556e71a7b38b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1fe6d04d004f461cb30f359f681a14c9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ab5d43e3d7154ce5aa9bfc408326c658",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6d7d9f08f8db40529f32d36ee9a37086",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7501ba28c0c34e46a79123ac0023223b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9b95c486369a4b6a8a59f4ac45120739",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9e72103cb65f4ab59bb370df5afb7014",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4b31f31d27144a5eb2a593548e14cba5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "06ee73b3000e4e6ca050ffdc03ae7aad",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "237305408f93473291f5e932c91393a4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6b250303380a476aa3590fdde69f60a8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2f857f641891404db57d1aded91bd53f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4e469cc406e24f47bc77e409a03b75e5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7fce536d9d1849e191adca0128780650",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8db9dc80e413452e90657e6cb58e0399",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f36535f6b8dd41508ec262a6681955c4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d2636409358c4b5ba9ce85e7abb8dfc4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5c921c5dc91c4e529cc24fd0a8fd09e3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "eac3293818a64eeaaaa90bb0c7948b61",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "cb3900a79f0d49f196d1af7c4a674211",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8ca09fa3a3574cbf8e9926bc2eccfd9c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "208c1e84c6014f38988f86b19a4e9fb8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6b94dba2426d41aebae83f6e78d1662c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "695cc1be54e84665ae2f1e90a8d813c8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "43411706aa994502b6a2e48127eb2fd0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "988628e81ade43a7ab17891d6d637592",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dd2f410b65ba4a03a89576f6733e26ca",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d57ff0d0d81447019065af8c719f6a94",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "01776f586ca44e4ba82c6241a3bec771",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8b2f80900e77484bb9496f9bb85e9bed",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e36c698df33e4156b91ccbc641ad2d4b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b98bf8301f5845a9ad6cd8f1249a8295",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "811a0c0f30b64e558ad43d65cca3385a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "23a72490b3c84da893522ee58e2772b2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "40cbaa10602946d281e5244e23d91ec5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6cd555a55b3d45bd8d5b20aa97a5fa1b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e1ad73a683f44e25b91cff38c51447e1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "cbdae3af318e407fabd8c6a60689b7d7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ed5b186e8f4f4f35b488c4d9c7f012ce",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "76c4276c748d4592b832cc9d9fe45bf4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "29206e45677b4a6a9dfaa57c282a3481",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d811adbeb6ab4fd2bcd1c5e90098477c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7ef5acd8b9a2436a9c5f2a9cb2d3f6ce",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4f0b58087abc4920aa5571a87e6c261a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0f2f7139b2c44abb8e4e840972a9fae4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "55d9e2f3c41f474a842dfba2eb01b020",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a7a07b6baa254981aa4fb448d09a8b6c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "aad4a2577a5245949f948c0bc321c3aa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8dd24683ad034c49ab1f62b1586d0ab5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7cae670a9c4f44aa850b107944f32137",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b6fa2fdc427d44578ffed309264cf1f2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4ecaf9c245c748bd8673f6e5ae3b1e0e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "152c3cd7ea7b4f7da0487e4d4e791f1e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "657ec7b3a3a44754b1c044e7c62a6ea0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ce7e670ef937451a9dd75a98de5cebdc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6065e2883cbc4e588899ef8959e219a3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9eb6231c385c4403b5727005483692ce",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "56215df8bcc74b0d8ede532abb54d367",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "97813a2ffd8840efb959a2806c560ed5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ab527d7cb9a6484e9143bc0c1fb78f4a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fd454974c47d48c8aaceb975dc1ebb92",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e74ca5317ee0450d84315f69f1190cd0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1fe4221fc6eb4530b2ce3c8229d0610c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2dab986743e74625b9f5770805480adf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "50fd0c38dcc54d2e9cb1d35fb7ac6f90",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "caca834dc9cd49e789f86d935d9119f6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b68d76e085074a9dbf730aaa04a6c7a7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ebca7034514e427fb35026e5897e89f4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d9bacd38e06b4a3c9f46b9168f189683",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "05b66076d65e4d22b0c1d86f5ecbf58f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c805e2eaf74b4d8aad2803ee4199a7ed",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ab8794182097412a9f61ff0c9da0ca3b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6bbe9e45edf8442f9ca33544e7427495",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fe175e1c168d4fecad107d9dda14c282",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "15bfe99cdc5d414bba09cb3789bd04a3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0d48954b26bc46888af58e1894b6262f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f3fa5f1e3ab34866a66ea597896f8417",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5a79a8d1ef0c4e9e8a5456a2e6db4a1d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6d795daa514945069e281ca255a8561f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6f50f7e720df457fa70489d90a4400ad",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5a1831c79503403d80a22eadb1035bb7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8035fbbbc0f140119679af8a0d2d6c9c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b2f351763db440e2a3ebed53a3f03917",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9be2a680d1ca4d5c84b7b484da42c689",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c4edf2d8846a415895f17992ab0a896b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "89c5f5fadc384625899de9aebb815fc7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4147758a5f9145ec98acf608f7ab2a2a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9fca0d4a9ee340a784022f5cf56a8dd8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "557255937be04812948ad212bab555c7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fd9380b67da74c188395345abb791875",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2228c3855e9b4dd195648852b772c966",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "35cc3424d51545b5a9582f47f8afeec1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "284aac93d1824648aed73e965b7acaef",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "79b73e48ef184ea493ba870129a05fa7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bfcf5533c449434194a338c5f4d9aace",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "efb87f2bf22a48c090893a9c9b859a76",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ceda32b0766349beb8f2f6d74eb3037e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e78836bd49d6445f95d9f5c1da5522f3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3a7332b10e2b470eb7885e93e754ce9a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "557fe847da41401f8a590a7fbf565eff",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "29fa8edbf8794c5585123d8329c9d3a8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2a43e09000224ba3ac96d906c4e5b225",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d1935abc4d064d1f8c355854d1938a7c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8a94ee1fc71f420f97d8c799e5eb4126",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ba56663e7e1e4e3ea90343c0e4bb2f8a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a3e43e013aef4e22866d018b991f8d63",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1634c553637e438a881027b045cc97c6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c4a540d2d8ec4d08a631530164d16f3b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "040d4a4bd9c842f394c2c3faed73415a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "010f46d962a544df95aa827d70278890",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d03993a24368476aa205c16501ba62a0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9a14fe09174f446da2f1fdbaab02c65d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "73a3889299f549a49ca1705795b0bbc1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5776048b5d23484aa592ea132ba24b21",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7e6f1bd5033843a6b4da93b62175ec63",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0ed1cd570f054e66bddadceb9132902b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "99e760fe46d74e13b39b4d7913507661",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0d47e3d7aa164ad68f298ee8d5c43ef1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "289c6f8359aa48248bcbd14b0a2d294e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2fe2875dce344ce08ca023d4078cf1d3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e12f7907c922414381b6783fa1abb0f0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "12c95035469d4280a02dcab43ebb0949",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d199cd56d7ad48cf9cb467aa5d7ddd14",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bbf9915342b54a088779397ab21cb689",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a650953c484d459ba1578d319be8896a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3674e7ab7e6546688ebfb4e668446aaf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a05c1fe8bd254095b46e5377ac46a639",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b566bbab82de468899ee7044bcec8a70",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c2029bbaff62451fa5144f747a07dcbf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "747107508e3244248a2948f6a14371be",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a1432b2f1a434eca84a61f290de47673",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "765abced3dbd47a9816c6bb04e911b2c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4086f1120d044b0fa0c5dd786b803811",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "777f4e7024d04e91b4e9e7f8641e8680",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d04cc1fe371c44e49a50c753ab952dd1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ddd84e9fe93d4240a5739beabaa92087",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9e22244b8d864e1c98e4d0c6351c27ca",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "eef039a1cbe2424f9f422fcf539b10cb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "85007cf568cc4154ad47b234e6b17b85",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9bb2e0240f9644a39ef60461c6e15f19",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "915adbec994b41e5aaebd815e513187d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7809c00dbfff4a6fa7d182921d21e8b6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "26e9feeef8f842e8a23900e397663ad2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c1bb893913f74070ad90ea5287f0edaf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "998e0c9854ad440fa660aa4140fef1fc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a569e64f17174a768723923f46ecbc59",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3d49529e54364c71b57231ddaa234ab7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "894bf70e9dbf45bab80169190073f125",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0325081088ef4f0eb5354be669593ea2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e42520004d6d478aac101b73b314a019",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fd4a66db2bcc4fb1b58a5ab63d9241ed",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bc9fcd2ab30942b88d5311946cca150f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2b3890a154fd46e5a0ca374d0b875a90",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "58956bdeeb244dda90afa3b015228091",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "819c2e928356486692b2e8ebc31ad906",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4249243f9216473880bc96858f3c2ad1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "791f4e65c6b64ca3b2e32d491cbbc4b4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "be5bffd00832425ba0379a419b529520",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ed9ffb2c63bd48a1adf4445668473334",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6bd69c64ffae464b9a41f5c1ade196ed",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e63b2c06d93548bd833111fba3a0b2b4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1ac63205a0bc436dbb7b77603fe80bcd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3a2eedf1147d4285a5ba98729cf47cf6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7588e0792cf24929acfcc54a67dee95c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "078e5943c04c44edb9ced98a2ad230be",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1ea996a8d9bd4811854a5d547d48d37c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8386ce4f82864e409d4fb8df27a83751",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c73799c3526a4d65a23186801620e4c8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "917dd79d7e064348b3109f1e0f2bc86d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bdec53c448874faf8a28f434c7090264",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "96b66f0d40fb4485a9257824f5cf302e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "47de1e38b0994100be364d80ddbe9610",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "36954e6610fd475592ceca82e4c6baaa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ee8d56f003cf4628b240188a33b2d268",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "45bdf6b280744c37b887b371731abfa5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7bd093e5989642f99b0a00366787829e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dadde34ea9d64c73a1519038e10c40d0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bceb3a8030714f2890b641cf900bfd43",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bb783d27f9424404ac9085a84d363f35",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e7a738b0979a47bf9852a5b69172d1dd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "40c867cbe12742299e08bc60e80e216d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a2866a95597c4d1b966b764209a1670a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "68dee321017a4b1ea640b16ee4cac317",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b0d3a9559c6b4a4eace1c24c46fc5a47",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fcd876dbbc964b8aaa5a80b654d5c02d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1fed401b8419458e9c94200d056ea597",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5d455f13ab8d435fbb94b968c11860e8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "64562f7bdf804ffbb17b7910c1876b6f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "36a5c604133b4c5da3eb2a127cf13b54",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "821a319646b1415582dbafe50370f1ae",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "99ed015ac51847bcb35f60f209a64638",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e3e216718eed43d899147e0fc0869be1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "58396dc0c70c45d7aaeeeccd95293338",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9fea2634aaa04920bd1b15f2d1f2a688",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b0c8d134b45e45449ef3f10fe1dc49da",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bf1af459cd1a4450bb16b3612906cb54",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a3697bd499454d17aedb70afb1430935",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f256f0052339466094589e2ca6989fd6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b089ba496eab40579b0fba447aed67ff",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dcacd996c2844b448e214697531b75af",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "50b0227c13e94fb6a981af1190369977",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3b168b65538242b9a12f91f9a0da5249",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "22fce066286640dcbfde723586cba743",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "24fb01d89cde49de8dc15daadcf8e946",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c92a44753fe8433aaa0af8602f3e7f62",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "762738f8aa2f4d92a5d23ddbe5a72b3c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a871e20f61f041918cdfa625f9880752",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1de7629c7faf4340ae9185298661b9b8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "88df23e6733644318effa8d51cf59e39",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a3b7844934e34d7e9eec586eca5e5bec",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c75d722835ce4923bb52dc6fa05bd04e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c822b1132dcc4b908e4d7793035c4bdb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fba42bd30b264b8facabe7664a11adb4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "666889da37a141a69253a32e26a9733c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5f3e83d9bfc346cc8bb078897296154e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "80b8923499874c3d8d78306f675ab675",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c0c031759671421597d379aaaa54dd81",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7ee8949c6e374c14bcb285d0286f94c3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ab21eda2e8f649b7ad40755a75ed840b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2a05ea8e703a4312be106b3cdec702b7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7af95a960de54a329b64334e953499e2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bedb3e014495428685a026a62948b66e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b5617315a55e464aa4ee3b6799ecaac4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dd6c2b09fb3e4a94b2eeb6c8dd3cdc73",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ccfeed8c8ea64ccabef87df9b23ea6e1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "08db70afd5974e5f8263ee0104b5e625",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c700946375be49c08c95cf60f4a9eb88",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "29957b916c7f428d965061806836a95d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "50a20d7a4eee4c19bbbd6e91222f77e3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bd2569eed408495db439e40f78e7dbf2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "181595202ef540cf8d22954f172ce79a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5e0ad78727d942b992346ce5dea88d36",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8e1e27783df04b62bcc961a17126f481",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5e797203fd104b02a942c04d6fa88072",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f17f51649d4a4fb89239d92668304a32",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5b8d23b8b1c443a0a1ff46adeb6df0ec",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b3cc554a87e44c97b7a970675f265ac2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1daf5014bce242d78be23c257e4fce49",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1d4670b53cfc45bf8ef5b49015de8682",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dd8084ec0d4042018ab137a60c3e24a0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c43b466b36994bf686e5442ee24f1365",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "71733b0649e04b8aa2bd9b8fe22b923f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "81df6afe8bd041439872e33068020eba",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a647837d423b477cb5ae8f44c0cb87a9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "566b68dd26384fd881b537fbd5175781",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b616cd3e33574e1eaa4e361128838431",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7d94c819411941938e51a319c06faa6e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a9f63816681241ca928c5650a43c7394",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "095ae0aefb4f4fd0bd5b61be7259cce8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "aba546d8081d4e5b90f712059b46f206",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8417719c3b534f369c5375858eb071ec",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4a815bac2ce047a3993f1074ce596292",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "021db32bf2364b66ad31be17065ec0c3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "54bc068147b249a6a25be467ceeb9d5c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "01f3b360857f491d8930b75c295b179f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9b1f9d12bad94d2c9493f51af7ca7de2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "96abad2fd9754053939b81d981cc119e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ee20991c435542dbadbee34da1bd571c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1b74e380e766412ca2ae5e3943d698a3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b105eadc80b640c6984d2d87703bc0ed",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "975e823d9ecc4594b4d915d936aa1925",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4166a9286a1041dd860111fb3e5b814b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c3a2ff932bd943d7827f8d847d4ae4f1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "36371cf7498f4d34b74082e2dd556326",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "86b7daa1e6e64aac8c551143387ff13e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f9c4768211c34c7ebdb1cb8c360d74a9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8af15ffebd5549a4b0c29a88192dae96",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c0af853fac7f4ddb954956c9d0847123",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b86477c0f048460bb559c4aa0e79ce02",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f94f3582a0e2437ebfe7f6e5dfb5695e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "205183d65c384745ad521f099adb1f1d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "44d6c2ac85ca4f46a7216708acb16cf1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "59cd81ca92cf4bcc970660249a7501cf",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "31bca03500614873b3ce51652ec81197",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0e0ab61d4ef14d92848592f2a300ff0f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "af39a2a137ad47d8b43f46f4a2af21fe",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ae75134dd21449bf8fd1d7cb6ff2cec9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "42472ef7afbd417c9fae04bd3fabd505",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5af7f2efc3f34e2397685ef30b9d64a8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5832f5cd594f4fe4beb63f916f8701a2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "683108791d584e29bdbf56cd5b185682",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "38e49862231e4d74b3eb225c8f0dd86b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "11fa5bf9fe714996947e2a5059c27751",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "81e1d19eca0349169664ccb110056f53",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bdf9a3a880d740d3b309244b61678704",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "63ac794cfa0e46238cad8ca963bf930d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e5578036899c46a299dfb926add956d8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ed78c72b0227459eac21f0b9f9fc0195",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "111da192a9ff4a348ce6a7e98489d585",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "db35ca77d6a346c58c7410feb6f78e53",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1b8a7fbee0dd43f999cb082c2c941fa0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5bc01e4683874e21986a66daebd6de15",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0750cf7ffe2c44748104719605139957",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0cb7bc3c1eca4fd58fac6c6b9f9bbc69",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ab7a7060f8ce422fa1c0951080fa91e4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "81ddabc481ed49ac8bffe9dd70067fcb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ec759eda5291449c9a57895412a83aaa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d4175a9f8cfb406abaaecc3ef32b46ed",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ad1cf0135b3141d8b01e14bea03039e0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "db8485aede5d4e4a8d62346492c6fb45",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fea9df6ce6ca4d519223dbf8bc47a649",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6cb8ca6c5b9240699b5e79e8362ed38b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "32db588b01c545b6a02bbb9a2d619523",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "93462447d383459894bc9b345e5cac9a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "94fe24d3b1b14f2a84b0a8f04f63281d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fa90ca714ae14c3cbf892cb1c00f0170",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0e86df09af11413eb49a7f7e6ae0803c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "cd271e808ecc4d87abd1820264acefa1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fa46b7cbe4d54f01b7985b10c2265073",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4391e69cabde40b584ffa18e52d1ca06",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fd9bf107b0664d81a38e425b16c12197",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "432717a999ed48cf82a9d66ec34db418",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5d5aa0758ce8423ab905c5ab4fbce0ac",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "684c1cbe22d34235934b9b1d76cab666",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6877fa6fed96431082a1445704883c10",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e02424e3167d43f286211cea4bb8b60e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "754d0d620e884b2181a899af0a549e68",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6627a4019b1c42fbb3f1fc56f890eda3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "8479471d2322431e850283c51c6b3d27",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d07023fe3fe8435491c3cc28976f1840",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a989d73825884c5dbcd74fd3ac87d91c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dec31cc736ea48d0b49d195f601d31f6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "20fbc4b3af4c48c8853f5cafede6c46b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "926221010b074da0a63c3f4f58190d29",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7d7aa30aaa254b7b91368d45a212ac41",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d7e4fac7e7bc44f4b438f92c0c457f96",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a8f9ea27befb4ae7820eabff85631957",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4f7b5d44cc4744fdbfb85a2de118b5e5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "857a7d2d31b74ae69386e19103478342",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "24427ab7f62c4b02bda6ed5b7e3c4422",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "680900236dbf43ce9357c5cf1b5cc8e8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3061eabd59de45a48c423952cce78dc9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7ad2c2fce747468687b22cfdf08bd822",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "14af4158fd93491596fd8862850bf058",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6ea11c4668d34810b15edd6781706479",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ea246be436d148b4b3a1d30fc24a4007",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b6a7b4f58f0847a6aa56458beacccab4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e2cd54bc045646f686099b8a64a0ff59",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ae9d0db6298e4db797315b48cfc32a55",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e1be0158e98a4d4fb0d4e4b13673d151",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "351c0c03884044ac88e2bd4383a0b950",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2e2fc5a55db8430bbf65b7ec1313d5c2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "00c0a968a88c459eb600079f6ac3d4ea",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f98f4a9019594d1ca3d368cabdbb3d68",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a9e656c4b8b64be2993bb5f03da63297",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1120ad5cf6bf46b380d1ac5b35221488",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "53fa9c1383bd43abb91425d9f9c4b890",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "fed7fa71b0fd47a8b1fe278b7232ea7a",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "07b9835b8e8e49b3aa2b491442808180",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "3498e812d0f64c11828f829658a1b5e8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "81d36a5a0cb3413e8f8f4105c026194b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "136a99f4319f4341bdbeed81dbeaa01c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7cad24201cab403ea248a4b7b41e8cc8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "60ecb957978c4b2f96f30e6a7fba32b4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "bb5d2ac5c7fc4a618c1bb1d5b3d775e7",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "43a2bc7301fd49ca8693584fbd0a99fc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f08e0ac9d9f34e64a07653ce7e250d6e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c183aadb5df04eb2a57c1d91f43cba27",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "882b4e18a92e45e18dcd22f14ebd93f9",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dd630d11c5e9459f9c4517e88a5891c6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f72281bb3db940a7b3320f518d9c89fd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5b9a9b4bead44604a5a2a4aa1390b023",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a85aed1a28d34b3e960e590fb0ca18ca",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "e73f99e7a26e4b2696dd4f3b4c050557",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "d4ac7854b8f745d8a1d78e0920ce7749",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "346f75de03a1472580b2f0513765ea69",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "008bedc0d3284205aeb92ac27cbe5246",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "a4c199eab4b344e99dfd207a1be077b4",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7855d6123705475082645d9a7c8051f1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "111e21b2c78b47d3b6d05f64d895cf68",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "de53167dd97f4f54b90e97c67344552f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "80732e49c8b64ef4918013812abc4ef5",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c19619e8d3524727968313a90b3fc7e0",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "99e28114b4ad4f8dae66f88f659194f6",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "239f76cdae854faeb4c866eb88d587f2",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f7e5ff4a9a5e46d58f64f17b15f66ca8",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "cf74bb7a025b46a48bfcb75c2c4b1d0d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "7eafd2a37bcc403e80b86b5c4ba06fce",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c21f6dacd056479d9a215565bebe1e5c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "b8929c29a8504d948e319ba683727d6b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "9afd138d4b09451a9766793f2993cf76",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2564a7bcb9f24fabaf590fe0c4a2e884",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "1d05775d82c14d43806005b130933bf1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "ec541cc7adcb43599d5cbac88319d54b",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "18f4161ec04e494e9ab28b2d8db7b437",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "91d7a6172a8d47478c0e91e8376c0721",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "88b9d1a2fd6c4b14a2f9379771b0c2fb",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2879f04a29c34158877674e72bd0b88f",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "487a9363824c4fd1b1cb5b0efca6c76d",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "c9602e4fa2a446fbb7413cb22f929b84",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Validation: | | 0/? [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"`Trainer.fit` stopped: `max_epochs=1500` reached.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from pina import Trainer\n",
|
|
"from pina.solver import PINN\n",
|
|
"from pina.model import FeedForward\n",
|
|
"from pina.callback import MetricTracker\n",
|
|
"\n",
|
|
"\n",
|
|
"# build the model\n",
|
|
"model = FeedForward(\n",
|
|
" layers=[10, 10],\n",
|
|
" func=torch.nn.Tanh,\n",
|
|
" output_dimensions=len(problem.output_variables),\n",
|
|
" input_dimensions=len(problem.input_variables)\n",
|
|
")\n",
|
|
"\n",
|
|
"# create the PINN object\n",
|
|
"pinn = PINN(problem, model)\n",
|
|
"\n",
|
|
"# create the trainer\n",
|
|
"trainer = Trainer(solver=pinn, max_epochs=1500, callbacks=[MetricTracker()], accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)\n",
|
|
"\n",
|
|
"# train\n",
|
|
"trainer.train()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "f8b4f496",
|
|
"metadata": {},
|
|
"source": [
|
|
"After the training we can inspect trainer logged metrics (by default **PINA** logs mean square error residual loss). The logged metrics can be accessed online using one of the `Lightinig` loggers. The final loss can be accessed by `trainer.logged_metrics`"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "f5fbf362",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'val_loss': tensor(0.0015),\n",
|
|
" 'bound_cond_loss': tensor(3.6597e-05),\n",
|
|
" 'phys_cond_loss': tensor(0.0012),\n",
|
|
" 'train_loss': tensor(0.0013)}"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# inspecting final loss\n",
|
|
"trainer.logged_metrics"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0963d7d2",
|
|
"metadata": {},
|
|
"source": [
|
|
"By using `matplotlib` we can also do some qualitative plots of the solution. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "ffbf0d5e",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.legend.Legend at 0x7f5e63a7d0d0>"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAKTCAYAAADVBfoyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjF9JREFUeJzs3Xd8Tffjx/HXzc2ODCGRIEjsGVttbSna2nsr1UVVVY0OOmmpVpcatZVQlJbaFXtvtfeMnb1z7++P+21+TdGKkZPxfj4e9/H4nHvOvXlfJHk743NMVqvVioiIiIhIJmFndAARERERkb9TQRURERGRTEUFVUREREQyFRVUEREREclUVFBFREREJFNRQRURERGRTEUFVUREREQyFXujAzwKFouFy5cv4+7ujslkMjqOiIiIiPyD1WolKiqK/PnzY2f37/tIs0VBvXz5MgEBAUbHEBEREZH/cOHCBQoWLPiv22SLguru7g7YPrCHh4fBaURERETknyIjIwkICEjtbf8mWxTUvw7re3h4qKCKiIiIZGL3czqmLpISERERkUxFBVVEREREMhUVVBERERHJVLLFOaj3KyUlhaSkJKNjiGQrDg4OmM1mo2OIiEg2kiMKqtVqJSwsjPDwcKOjiGRLXl5e+Pn5aR5iERF5JHJEQf2rnPr6+uLq6qpfoiKPiNVqJTY2lmvXrgHg7+9vcCIREckOsn1BTUlJSS2nefLkMTqOSLbj4uICwLVr1/D19dXhfhEReWjZ/iKpv845dXV1NTiJSPb11/eXzvEWEZFHIdsX1L/osL7I46PvLxEReZRyTEEVERERkaxBBVVEREREMpV0FdRRo0ZRrVo13N3d8fX1pWXLlhw7duxfX9OgQQNMJtMdj+eeey51m549e96xvkmTJg/2iSTDNWjQgAEDBhgd47H74IMPqFixYoZ9venTp+Pl5fXQ7xMaGorJZNI0ayIikmWkq6CuX7+evn37sm3bNlavXk1SUhLPPPMMMTEx93zNokWLuHLlSurj0KFDmM1m2rVrl2a7Jk2apNlu7ty5D/aJspG/ivtnn32W5vnFixdnqXP+pk+fftf/dISHh2MymQgNDb3v9+rZsyctW7Z8tAGzkbv9Z6FWrVpcuXIFT09PY0KJiIikU7qmmVqxYkWa5enTp+Pr68vu3bupV6/eXV/j7e2dZjkkJARXV9c7CqqTkxN+fn7piZMjODs78/nnn/Pyyy+TO3fuDP3aSUlJODg4PJL3sre3Z82aNaxbt44nn3zykbxnRrFaraSkpBgd44E5Ojrqe0tERLKUhzoHNSIiArizhP6bKVOm0LFjR9zc3NI8Hxoaiq+vLyVLluTVV1/l5s2b93yPhIQEIiMj0zzSw2q1EpuYbMjDarWmK2vDhg3x8/Nj1KhR/7rdpk2bqFu3Li4uLgQEBNC/f/80e7ZNJhOLFy9O8xovLy+mT58OwNmzZzGZTMybN4/69evj7OzMTz/9xM2bN+nUqRMFChTA1dWV8uXLP9DebTc3N3r16sXQoUP/dbsLFy7Qvn17vLy88Pb2pkWLFpw9exawHWKfMWMGS5YsST0VJDQ0lLZt29KvX7/U9xgwYAAmk4mjR48CkJiYiJubG2vWrAFs/3769++Pr68vzs7O1KlTh507d6a+/q9D4suXL6dKlSo4OTmxadOmO7KeOnWKoKAg+vXrd9e/V6vVygcffEChQoVwcnIif/789O/fP3X97du36d69O7lz58bV1ZWmTZty4sSJe/7Z3G3v8YABA2jQoEHq+vXr1/P111+n/vmcPXv2rof4Fy5cSNmyZXFycqJIkSKMHTs2zfsWKVKEkSNH0qtXL9zd3SlUqBCTJk26ZzYREZFH6YEn6rdYLAwYMIDatWtTrly5+3rNjh07OHToEFOmTEnzfJMmTWjdujWBgYGcOnWKd955h6ZNm7J169a7Tvo9atQoPvzwwweNTlxSCmWGr3zg1z+Mwx81xtXx/v/YzWYzI0eOpHPnzvTv35+CBQvesc2pU6do0qQJn3zyCVOnTuX69ev069ePfv36MW3atHTlGzp0KGPHjqVSpUo4OzsTHx9PlSpVGDJkCB4eHixbtoxu3bpRtGhRqlevnq73/uCDDyhWrBgLFiygbdu2d6xPSkqicePG1KxZk40bN2Jvb88nn3xCkyZNOHDgAIMGDeLIkSNERkamfi5vb28OHjzIxIkTU99n/fr15M2bl9DQUEqVKsXOnTtJSkqiVq1aAAwePJiFCxcyY8YMChcuzOjRo2ncuDEnT55M85+toUOH8sUXXxAUFETu3LnTnIpw4MABGjduTO/evfnkk0/u+nkXLlzIV199RUhICGXLliUsLIz9+/enru/ZsycnTpzg119/xcPDgyFDhvDss89y+PDhB9pz/fXXX3P8+HHKlSvHRx99BICPj09qwf/L7t27ad++PR988AEdOnRgy5YtvPbaa+TJk4eePXumbjd27Fg+/vhj3nnnHRYsWMCrr75K/fr1KVmyZLqziYiIpMcD70Ht27cvhw4dIiQk5L5fM2XKFMqXL39HsenYsSPNmzenfPnytGzZkqVLl7Jz5857nps4bNgwIiIiUh8XLlx40I+RJbRq1YqKFSsyYsSIu64fNWoUXbp0YcCAARQvXpxatWrxzTffMHPmTOLj49P1tQYMGJD6nwV/f38KFCjAoEGDqFixIkFBQbz++us0adKE+fPnp/tz5M+fnzfeeIN3332X5OTkO9bPmzcPi8XCjz/+SPny5SldujTTpk3j/PnzhIaGkitXLlxcXFJPB/Hz88PR0ZEGDRpw+PBhrl+/zu3btzl8+DBvvPFG6r+f0NBQqlWrhqurKzExMfzwww+MGTOGpk2bUqZMGSZPnoyLi8sd/3H66KOPaNSoEUWLFk1TXLds2UKDBg0YNGjQPcspwPnz5/Hz86Nhw4YUKlSI6tWr06dPH4DUYvrjjz9St25dgoOD+emnn7h06dIde7rvl6enJ46Ojri6uqb++dztP3hffvklTz/9NO+//z4lSpSgZ8+e9OvXjzFjxqTZ7tlnn+W1116jWLFiDBkyhLx587Ju3boHyiYiIpIeD7QHtV+/fixdupQNGzbcdY/e3cTExBASEpK6Z+ffBAUFkTdvXk6ePMnTTz99x3onJyecnJzSnfsvLg5mDn/U+IFf/zBcHB7sNpCff/45Tz31FIMGDbpj3f79+zlw4AA//fRT6nNWqxWLxcKZM2coXbr0fX+dqlWrpllOSUlh5MiRzJ8/n0uXLpGYmEhCQsID35lryJAhTJw4kalTp9K+ffs7PsfJkydxd3dP83x8fDynTp2653uWK1cOb29v1q9fj6OjI5UqVeL555/n+++/B2x7VP86DH7q1CmSkpKoXbt26usdHByoXr06R44cSfO+//yzAFvpbNSoEZ9++ul/zlzQrl07xo0bR1BQEE2aNOHZZ5+lWbNm2Nvbc+TIEezt7alRo0bq9nny5KFkyZJ35HjUjhw5QosWLdI8V7t2bcaNG0dKSkpqqa1QoULqepPJhJ+fH9euXXus2URERCCdBdVqtfL666/zyy+/EBoaSmBg4H2/9ueffyYhIYGuXbv+57YXL17k5s2b+Pv7pyfefTOZTOk6zJ4Z1KtXj8aNGzNs2LA0h2EBoqOjefnll9Oc3/iXQoUKAbbP/M/zJO92W8p/nhs8ZswYvv76a8aNG0f58uVxc3NjwIABJCYmPtDn8PLyYtiwYXz44Yc8//zzd3yOKlWqpCnaf/Hx8bnne5pMJurVq0doaChOTk40aNCAChUqkJCQwKFDh9iyZctdi/1/+eefxV858ufPz9y5c+nVqxceHh73fH1AQADHjh1jzZo1rF69mtdee40xY8awfv36dGcBsLOzu6+/w0fln6cZmEwmLBbLY/t6IiIif0nXIf6+ffsye/Zs5syZg7u7O2FhYYSFhREXF5e6Tffu3Rk2bNgdr50yZQotW7YkT548aZ6Pjo7m7bffZtu2bZw9e5a1a9fSokULihUrRuPGxuzlzKw+++wzfvvtN7Zu3Zrm+cqVK3P48GGKFSt2x8PR0RGwFasrV66kvubEiRPExsb+59fcvHkzLVq0oGvXrgQHBxMUFMTx48cf6nO8/vrr2NnZ8fXXX9/xOU6cOIGvr+8dn+OvKZIcHR3vekV9/fr1CQ0NJTQ0lAYNGmBnZ0e9evUYM2YMCQkJqXtMixYtiqOjI5s3b059bVJSEjt37qRMmTL/md3FxYWlS5fi7OxM48aNiYqK+s/tmzVrxjfffENoaChbt27l4MGDlC5dmuTkZLZv35667c2bNzl27Ng9c/zz7xBg3759aZbv9efzd6VLl07z+cH291yiRIm7nhIgIiKS0dJVUH/44QciIiJo0KAB/v7+qY958+albnP+/Pk7fokeO3aMTZs20bt37zve02w2c+DAAZo3b06JEiXo3bs3VapUYePGjQ91GD87Kl++PF26dOGbb75J8/yQIUPYsmUL/fr1Y9++fZw4cYIlS5akubL9qaee4rvvvmPv3r3s2rWLV1555b4uxClevDirV69my5YtHDlyhJdffpmrV68+1Odwdnbmww8/vONzdOnShbx589KiRQs2btzImTNnCA0NpX///ly8eBGwXV1+4MABjh07xo0bN1L3IP51Huqff/5JnTp1Up/76aefqFq1aureUDc3N1599VXefvttVqxYweHDh+nTpw+xsbF3/fd5N25ubixbtgx7e3uaNm1KdHT0XbebPn06U6ZM4dChQ5w+fZrZs2fj4uJC4cKFKV68OC1atKBPnz5s2rSJ/fv307VrVwoUKHDH4fe/PPXUU+zatYuZM2dy4sQJRowYwaFDh9JsU6RIEbZv387Zs2e5cePGXfd4vvXWW6xdu5aPP/6Y48ePM2PGDL777rsH2sssIiLyOKSroFqt1rs+/n7IOTQ0NHXqor+ULFkSq9VKo0aN7nhPFxcXVq5cybVr10hMTOTs2bNMmjSJfPnyPdAHyu4++uijO0pHhQoVWL9+PcePH6du3bpUqlSJ4cOHkz9//tRtxo4dS0BAAHXr1qVz584MGjTovs4jfe+996hcuTKNGzemQYMG+Pn5PZKJ8nv06EFQUFCa51xdXdmwYQOFChWidevWlC5dmt69exMfH596KL1Pnz6ULFmSqlWr4uPjk7onsHz58nh5eVGxYkVy5coF2ApqSkpK6vmnf/nss89o06YN3bp1o3Llypw8eZKVK1ema57ZXLlysXz5cqxWK88999xdb1bh5eXF5MmTqV27NhUqVGDNmjX89ttvqUcRpk2bRpUqVXj++eepWbMmVquV33///Z7/cWjcuDHvv/8+gwcPplq1akRFRdG9e/c02wwaNAiz2UyZMmXw8fHh/Pnzd7xP5cqVmT9/PiEhIZQrV47hw4fz0Ucf3XHqiIiIiFFM1vROzJkJRUZG4unpSURExB3nBMbHx3PmzBkCAwNxdnY2KKFI9qbvMxER+S//1tf+6aEm6hcRERGRLColGVIe38W2D0MFVURERCQn2jYeJj8Jl/caneQOKqgiIiIiOc2t07BuJIQdtD0yGRVUERERkZzEaoXf3oDkOAisB5W6GZ3oDiqoIiIiIjnJ3tlwZgPYO0Ozr8FkMjrRHVRQRURERHKKqDBY9a5t/OQ74B3079sbRAVVREREJKdYPhjiI8C/IjzR1+g096SCKiIiIpITHFkKh5eAyQzNvwWzvdGJ7kkFVR6r0NBQTCYT4eHhD/U+Z8+exWQy3XHveREREbkPceGw7C3buHZ/8K9ARGwSp67f/XbdRlNBzaRMJtO/Pj744AOjIz42PXv2vON2qgEBAVy5coVy5coZE0pERCQrWz0cosPAuyjUHwLAh7/9ybNfb2TRnosGh7tT5t23m8NduXIldTxv3jyGDx/OsWPHUp/7637zAFarlZSUFOzts+9fp9lsxs/Pz+gYIiIiWc+ZjbBnhm3c/FtwcGHln2Es2nsJOxMUzuNmbL670B7UTMrPzy/14enpiclkSl0+evQo7u7uLF++nCpVquDk5MSmTZvuuudxwIABNGjQIHXZYrEwatQoAgMDcXFxITg4mAULFvxrlvHjx1O8eHGcnZ3Jly8fbdu2TV2XkJBA//798fX1xdnZmTp16rBz5857vtcHH3xAxYoV0zw3btw4ihQpkrp+xowZLFmyJHVvcWho6F0P8a9fv57q1avj5OSEv78/Q4cOJTk5OXV9gwYN6N+/P4MHD8bb2xs/P79svedZRETkDklx8Ft/27jKC1CkNrdiEnn3F9vk/C/VK0qVwrkNDHh32XeX27+xWiEp1piv7eD6yOYbGzp0KF988QVBQUHkzn1//7hGjRrF7NmzmTBhAsWLF2fDhg107doVHx8f6tevf8f2u3bton///syaNYtatWpx69YtNm7cmLp+8ODBLFy4kBkzZlC4cGFGjx5N48aNOXnyJN7e3un+TIMGDeLIkSNERkYybdo0ALy9vbl8+XKa7S5dusSzzz5Lz549mTlzJkePHqVPnz44OzunKaEzZsxg4MCBbN++na1bt9KzZ09q165No0aN0p1NREQkywn9zHbXKHd/aPQhAO8vPsSN6ERK5MvFm42KGxzw7nJmQU2KhZH5jfna71wGx0ezK/2jjz5KV9FKSEhg5MiRrFmzhpo1awIQFBTEpk2bmDhx4l0L6vnz53Fzc+P555/H3d2dwoULU6lSJQBiYmL44YcfmD59Ok2bNgVg8uTJrF69milTpvD222+n+zPlypULFxcXEhIS/vWQ/vjx4wkICOC7777DZDJRqlQpLl++zJAhQxg+fDh2draDAxUqVGDEiBEAFC9enO+++461a9eqoIqISPZ3eR9s+dY2fm4sOHvy2/7LLDt4BbOdibHtKuJkbzY04r3kzIKaTVStWjVd2588eZLY2Ng7ylliYmJq6fynRo0aUbhwYYKCgmjSpAlNmjShVatWuLq6curUKZKSkqhdu3bq9g4ODlSvXp0jR46k/wOlw5EjR6hZsyamv+2Nrl27NtHR0Vy8eJFChQoBtoL6d/7+/ly7du2xZhMRETFcSjL8+jpYU6BMSyj1HNei4nl/ySEA+j1ZjPIFPY3N+C9yZkF1cLXtyTTqaz8ibm5p98Ta2dlhtVrTPJeUlJQ6jo62TSWxbNkyChQokGY7Jyenu34Nd3d39uzZQ2hoKKtWrWL48OF88MEH/3qe6b/5r4yPmoODQ5plk8mExWJ5bF9PREQkU9j6HYQdAGcvaDoaq9XKsIUHCY9Nomx+D/o9VczohP8qZxZUk+mRHWbPTHx8fDh06FCa5/bt25da0sqUKYOTkxPnz5+/6+H8e7G3t6dhw4Y0bNiQESNG4OXlxR9//EHjxo1xdHRk8+bNFC5cGLCVzZ07dzJgwIB7ZgwLC8Nqtabu/fzn3KaOjo6kpKT8a6bSpUuzcOHCNO+zefNm3N3dKViw4H1/NhERkWznxglYN9I2bvwpuOdjwa4LrD16DUezHWPbB+NgztzXyefMgppNPfXUU4wZM4aZM2dSs2ZNZs+ezaFDh1IP37u7uzNo0CDefPNNLBYLderUISIigs2bN+Ph4UGPHj3ueM+lS5dy+vRp6tWrR+7cufn999+xWCyULFkSNzc3Xn31Vd5++228vb0pVKgQo0ePJjY2lt69e981Y4MGDbh+/TqjR4+mbdu2rFixguXLl+Ph4ZG6TZEiRVi5ciXHjh0jT548eHreeQjitddeY9y4cbz++uv069ePY8eOMWLECAYOHJh6/qmIiEiOY0mBJX0hJQGKPgUVu3A5PI6PfjsMwIBGxSnl5/Efb2I8/SbPRho3bsz777/P4MGDqVatGlFRUXTv3j3NNh9//DHvv/8+o0aNonTp0jRp0oRly5YRGBh41/f08vJi0aJFPPXUU5QuXZoJEyYwd+5cypYtC8Bnn31GmzZt6NatG5UrV+bkyZOsXLnynrMKlC5dmvHjx/P9998THBzMjh07GDRoUJpt+vTpQ8mSJalatSo+Pj5s3rz5jvcpUKAAv//+Ozt27CA4OJhXXnmF3r1789577z3IH52IiEj2sGMyXNgOjrmg2ddYgSELDxCVkEylQl68VDfI6IT3xWT95wmBWVBkZCSenp5ERESk2RMHEB8fz5kzZwgMDMTZ2dmghCLZm77PREQygVtn4IdattmKnhsL1V5k9rZzvLf4EE72dvz+Rl2K+uT67/d5TP6tr/2T9qCKiIiIZHVWq+2q/aRYKFwHqvTi/M1YRv5um1VnSJNShpbT9FJBFREREcnqdk+HsxvB3gWaf4MFE4MW7Cc2MYUagd70rFXE6ITpooIqIiIikpVFXIRV79vGT78PeYoybctZdpy5haujmTFtg7GzezR3scwoKqgiIiIiWZXVCr8NgMQoKFgNarzCqevRjF5xFIB3nytNoTyPbg72jJJjCmo2uBZMJNPS95eIiEH2h8DJ1WB2hBbfk2w18db8/SQkW6hbPC+dqxcyOuEDyfYF9a9J6mNjYw1OIpJ9/fX99c87d4mIyGMUdRVWDLWNGwwFn5JM3HCafRfCcXe25/M2FdLcEjwryfYT9ZvNZry8vFLvv+7q6ppl/7JEMhur1UpsbCzXrl3Dy8sLs9lsdCQRkZzBaoVlAyE+HPyDoVZ/joZFMm7NcQBGNCtLfi8XYzM+hGxfUAH8/PwAUkuqiDxaXl5eqd9nIiKSAQ4vhqNLwc4eWnxPotXMwHn7SUqx0rB0PtpULmB0woeSIwqqyWTC398fX19fkpKSjI4jkq04ODhoz6mISEaKuQnL/ncXxrpvgV95vlt9nMNXIvFydWBk63JZ/mhxjiiofzGbzfpFKiIiIlnbiiEQewN8y0DdQRy8GMH3604C8EnLcvi6Z/07+mX7i6REREREso2jv8PBn8FkBy2+I95qZuD8faRYrDxXwZ/nK+Q3OuEjoYIqIiIikhXEhcPSN23jWq9DgSp8teY4J65FkzeXIx+3KGdovEdJBVVEREQkK1j1LkSHQZ5i0GAYu8/dYtKG0wCMal0BbzdHgwM+OiqoIiIiIpndybWwdzZgghbfE2t14K35+7FaoXXlAjQqk8/ohI+UCqqIiIhIZpYQBb+9YRvXeBkKPcHoFcc4ezMWPw9nRjQra2y+x0AFVURERCQzW/MBRFwAr8Lw9HC2nLrB9C1nAfi8bQU8XbLfXfxUUEVEREQyq9PrYeePtnHzb4i0OPL2zwcA6FS9EPVL+BgY7vFRQRURERHJjBKiYEk/27hqbwhqwMe/HeZSeByFvF1577nSxuZ7jFRQRURERDKjVe9DxHnwKgSNPmLVn2H8vPsiJhOMbR+Mm1P2vd+SCqqIiIhIZnNyLeyeZhu3GM+NJAeGLToIwEv1gqhWxNvAcI+fCqqIiIhIZhIfAb/2t42rv4y1SB3e/eUgN2MSKZnPnYGNShibLwOooIqIiIhkJivfhciLkDsQGo5g0Z5LrPzzKg5mE192CMbJ3mx0wsdOBVVEREQkszixGvbOAkzQcjyXYu344Nc/ARjQsARl83samy+DqKCKiIiIZAZxt+HX123jJ17DElCTwQv2E5WQTKVCXrxcL8jYfBlIBVVEREQkM1jxDkRdgTzF4Kn3mLn1LJtP3sTFwcyX7Stib845tS3nfFIRERGRzOrYctg/B0x20PIHToZbGLX8KADvPFuKwLxuBgfMWCqoIiIiIkaKvQW/vWEb1+xHcv6qvDV/HwnJFuoWz0vXJwobm88AKqgiIiIiRlo+GKKvQt4S8OS7jA89xf6LEbg72zO6bQVMJpPRCTOcCqqIiIiIUQ7/Cgd//t+h/QkcupbAN2tPAPBxi3L4e7oYHNAYKqgiIiIiRoi5AUvftI1rDyA+X0XenLePZIuVZ8v70aJifmPzGUgFVURERMQIvw+C2BvgUxoaDGXsqmOcuBZN3lxOfNKyfI48tP8XFVQRERGRjHZoEfz5C5jM0OoHtp2P5sdNZwD4vE15vN0cDQ5oLBVUERERkYwUfQ2WvWUb132L6DzlGfTzfqxW6FgtgKdL5zM2XyaggioiIiKSUaxW23mncbcgXzmo9zafLD3MxdtxFMztwnvPlzE6YaaggioiIiKSUQ4thKNLwc4eWv7A2hO3Cdl5AZMJvmgXTC4ne6MTZgoqqCIiIiIZISrMdmEUQL3B3PIoxZCFBwF4sU4gTwTlMTBc5qKCKiIiIvK4Wa3w6+sQdxv8KmCt8ybv/nKQG9EJFPfNxVvPlDQ6YaaigioiIiLyuO2ZASdWgdkJWk9iycHrLD8Uhr2dia86VMTZwWx0wkxFBVVERETkcbp1Bla8Yxs/PZwrTkUYvuQQAP2fLk65Ap4GhsucVFBFREREHhdLCix+FZJioHAdrE+8yuAFB4iMTyY4wIvXGhQ1OmGmpIIqIiIi8rhs+RbObwXHXNByPLO3X2DjiRs42dvxZftg7M2qYnejPxURERGRxyHsEKz71DZu8hmnk/Mw8vejAAxrWoqiPrkMDJe5qaCKiIiIPGrJCfDLy5CSCCWaklShM2/O20dcUgq1i+Whe80iRifM1FRQRURERB610M/g6iFwzQPNv+G7dafYfzECD2d7vmgXjJ2dyeiEmZoKqoiIiMijdH47bB5nGz//FXtvOfDdupMAfNKqPP6eLsZlyyJUUEVEREQelYRo26F9qwUqdCSm6HO8OW8fKRYrLSrmp3lwfqMTZgkqqCIiIiKPyurhcPsMeBSApp/zybIjnL0Zi7+nMx+1KGd0uixDBVVERETkUTi5BnZNsY1bjmft2QTm7jgPwNh2wXi6OBgYLmtRQRURERF5WLG3YEk/27jGK9zwrcmQhQcAeLFOILWK5TUwXNaTroI6atQoqlWrhru7O76+vrRs2ZJjx47962umT5+OyWRK83B2dk6zjdVqZfjw4fj7++Pi4kLDhg05ceJE+j+NiIiIiBF+fxuirkCe4lifHs7QhQe5EZ1IyXzuDGpc0uh0WU66Cur69evp27cv27ZtY/Xq1SQlJfHMM88QExPzr6/z8PDgypUrqY9z586lWT969Gi++eYbJkyYwPbt23Fzc6Nx48bEx8en/xOJiIiIZKRDC+HQAjCZodVE5u+/yZojV3E02/FVh4o4O5iNTpjl2Kdn4xUrVqRZnj59Or6+vuzevZt69erd83Umkwk/P7+7rrNarYwbN4733nuPFi1aADBz5kzy5cvH4sWL6dixY3oiioiIiGScyCuw7C3buN4gzrmU4sPfNgLw1jMlKJPfw8BwWddDnYMaEREBgLe3979uFx0dTeHChQkICKBFixb8+eefqevOnDlDWFgYDRs2TH3O09OTGjVqsHXr1ru+X0JCApGRkWkeIiIiIhnKaoVfX4e42+AfTHLtt3hz3j5iE1OoEejNi3WDjE6YZT1wQbVYLAwYMIDatWtTrty9p00oWbIkU6dOZcmSJcyePRuLxUKtWrW4ePEiAGFhYQDky5cvzevy5cuXuu6fRo0ahaenZ+ojICDgQT+GiIiIyIPZPQ1OrgazE7SaxA8bz7PnfDjuTvaMbR+MWXeLemAPXFD79u3LoUOHCAkJ+dftatasSffu3alYsSL169dn0aJF+Pj4MHHixAf90gwbNoyIiIjUx4ULFx74vURERETS7dZpWPmebdxwBAcS/fh6re0C7w9blKVgblcDw2V9D1RQ+/Xrx9KlS1m3bh0FCxZM12sdHByoVKkSJ0/abvn117mpV69eTbPd1atX73neqpOTEx4eHmkeIiIiIhkiJRkWvQRJMVC4DnGVX2LAvH0kW6w8V96fVpUKGJ0wy0tXQbVarfTr149ffvmFP/74g8DAwHR/wZSUFA4ePIi/vz8AgYGB+Pn5sXbt2tRtIiMj2b59OzVr1kz3+4uIiIg8Vhu/gIs7wckTWk1g1IpjnL4eQz4PJz5tVQ6TSYf2H1a6ruLv27cvc+bMYcmSJbi7u6eeI+rp6YmLiwsA3bt3p0CBAowaNQqAjz76iCeeeIJixYoRHh7OmDFjOHfuHC+++CJgu8J/wIABfPLJJxQvXpzAwEDef/998ufPT8uWLR/hRxURERF5SBd2wvrRtvFzYwm96sTMrbbpM79oF4yXq6OB4bKPdBXUH374AYAGDRqkeX7atGn07NkTgPPnz2Nn9/87Zm/fvk2fPn0ICwsjd+7cVKlShS1btlCmTJnUbQYPHkxMTAwvvfQS4eHh1KlThxUrVtwxob+IiIiIYRKiYVEfsKZAubbcLtqCt8dtAKBnrSLULe5jcMDsw2S1Wq1Gh3hYkZGReHp6EhERofNRRURE5PFY0g/2zgKPglhf3cRrC0+z/FAYxXxzsfT1OpqQ/z+kp6891DyoIiIiIjnCkd9s5RQTtJrAwsMxLD8Uhr2diXG6W9Qjp4IqIiIi8m+iwuDX/rZx7f5c8KzCB7/abjr0ZqMSlCvgaWC47EkFVUREROReLBZY/BrE3QK/8qQ0eJe35u8nOiGZqoVz80r9okYnzJZUUEVERETuZedkOLUW7J2h9Y9M2nyRHWdv4eZo5qsOFXW3qMdEBVVERETkbq4dgdXDbeNGH3Mw0Z+xq44BMKJ5WQK8dbeox0UFVUREROSfkhNsU0olx0OxhsRWfIE3QvaSbLHybHk/2lVJ3500JX1UUEVERET+6Y9PIOwguOaBFuP5eNlRTt+Iwc/DmZGtyutuUY+ZCqqIiIjI353ZAFu+tY2bfcPK81bm7jiPyQRfttfdojKCCqqIiIjIX+Juwy+vAFao3J2rBRoydOEBAF6qG0StYnmNzZdDqKCKiIiIAFitsOwtiLwE3kFYnhnJoJ/3czs2ibL5PRj4TAmjE+YYKqgiIiIiAAd/hkMLwWSG1pOZuvM6G0/cwNnBjq87VsTJXneLyigqqCIiIiLh5217TwHqD+GwXQlGr7BNKfXec2Uo5utuYLicRwVVREREcjZLCix6GRIioWB14msO4I2QvSSmWGhY2pcuNQoZnTDHUUEVERGRnG3zODi/BRxzQeuJjFpxghPXosmby4nP21TQlFIGUEEVERGRnOviblg30jZu+jnrruVixtZzAHzRrgJ5cjkZGC7nUkEVERGRnCkhChb2AksylG3F9aJteXvBfgBeqF2EBiV9DQ6Yc6mgioiISM60bBDcPgueAVif/4rBCw9wIzqRkvncGdKklNHpcjQVVBEREcl5DsyHAyFgsoM2PzJrXwTrjl3H0d6OrztVxNlBU0oZSQVVREREcpZbZ2DpQNu4/hCOO5Xl02VHABjWtBSl/DwMDCeggioiIiI5SUoSLHwREqMg4AkSar1J/7l7SUi2UL+EDz1rFTE6oaCCKiIiIjlJ6GdwaRc4eUKbyYxZdYqjYVF4uzkypp2mlMosVFBFREQkZzi7CTaOtY2bjWPjdRd+3HQGgNFtKuDr7mxgOPk7FVQRERHJ/mJvwaKXACtU6sqtwOd5a75tSqmuTxSiYZl8xuaTNFRQRUREJHuzWuG3/hB5CfIUw9rkM4YsPMC1qASK+rjx7rNljE4o/6CCKiIiItnb7ulw5Dewc4A2PxKy/zarD1/FwWzi646VcHHUlFKZjQqqiIiIZF/XjsKKYbbx08M5aV+cj347DMDbjUtSroCngeHkXlRQRUREJHtKirdNKZUcB0WfIqH6q/Sfu5e4pBRqF8vDi3WCjE4o96CCKiIiItnTmg/g6kFwzQstJ/D5ihMcvhJJblcHvmxfETs7TSmVWamgioiISPZzfBVs/8E2bjmedZdMTN1sm1Lqi3bB5PPQlFKZmQqqiIiIZC9RV2Hxq7ZxjVe45lefQT/bppTqWasIT5fWlFKZnQqqiIiIZB8WCyx+BWJvQL5yWJ7+gLd+3s/NmERK+bkztGkpoxPKfVBBFRERkexj23g49QfYO0ObKUzeepmNJ27g7GDHd50r4eygKaWyAhVUERERyR4u7bFdGAXQeCT7E/wYs/IYACOalaWYr7tx2SRdVFBFREQk64uPhAW9wJIEpZ4nunx3+ofsJdlipWk5PzpWCzA6oaSDCqqIiIhkbVYrLB0At8+AZyFo8R3Df/2Tczdjye/pzGetK2AyaUqprEQFVURERLK2PTPh0EIwmaHtFBYfjWXRnkvYmeDrTpXwdHUwOqGkkwqqiIiIZF3XjsDyIbbx0+9z3rUc7y0+BED/p4tTrYi3geHkQamgioiISNaUGAs/9/zfrUyfJumJ13k9ZC/RCclUK5Kbfk8WMzqhPCAVVBEREcmaVgyB60chVz5oNZEv15xk/4VwPJztGdexEvZm1ZysSn9zIiIikvUcXGA79xQTtJ7EljATE9afAuDzNhUo4OVibD55KCqoIiIikrXcPAW/DbCN6w3iVr5aDJi3D6sVOlUPoGl5f0PjycNTQRUREZGsIznBNt9pYhQUqoW1/hAGL9jPtagEivnmYvjzZY1OKI+ACqqIiIhkHWs+gCv7wCU3tPmRmdsvsebINRzNdnzTsRIujrqVaXaggioiIiJZw7HlsG28bdzyB47EuvPp70cAeOfZUpTJ72FgOHmUVFBFREQk84u4CItftY2feI2YIo3oO2cPickWni7lS49aRQyNJ4+WCqqIiIhkbinJsPBFiLsN/hWh4QcMX/Inp6/H4OfhzJh2wbqVaTajgioiIiKZ2/rP4PxWcHSHdtNYdOA6C/dctN3KtGNFvN0cjU4oj5gKqoiIiGRep0Nhwxe2cbNxnErxTb2V6RtPl6BGUB7jssljo4IqIiIimVP0NVj0EmCFyt2JL9WKfnP2EpuYQs2gPPR7Srcyza5UUEVERCTzsVjgl1cg+ir4lIYmnzPy9yMcuRJJHjdHxnWsiNlO551mVyqoIiIikvls/gpOrQV7F2g3jRXHI5i59RwAY9sHk8/D2eCA8jipoIqIiEjmcnYT/PGJbfzsGC7YF2bwggMAvFwviAYlfQ0MJxlBBVVEREQyj+hrsKA3WC0Q3JmkCp3pH7KXyPhkKgZ4MahxSaMTSgZQQRUREZHMwZJim+80Ogx8SsFzXzB29Qn2ng/H3dmebztVwsGs6pIT6G9ZREREMocNY+DMenBwhfYzWX82lgnrTwEwuk0FArxdDQ4oGUUFVURERIx3ah2EfmYbPz+Oa06FGThvHwBdnyhE0/L+xmWTDKeCKiIiIsaKCoNFffhrvtOU8u0ZMG8fN2MSKeXnznvPlTE6oWQwFVQRERExTkqy7aKomOuQrxw0Hc34dSfZcuomLg5mvutcGWcHs9EpJYOpoIqIiIhxQkfCuU3gmAvazWDHxTi+WnMcgI9blqOYby6DA4oRVFBFRETEGCdWw8axtnHzb7jtUog3QvZisULrSgVoW6WgsfnEMCqoIiIikvEiLsKil2zjai9iLduaQT/v50pEPEF53fi4ZTlj84mhVFBFREQkY6UkwYJeEHcL/CtC45FM3XyWtUev4Whvx7edK+HmZG90SjGQCqqIiIhkrLUfwoXt4OQJ7aaz93Iso34/AsB7z5WmbH5PgwOK0VRQRUREJOMc/R22fGsbt/yecOcC9Juzl2SLlefK+9PticLG5pNMQQVVREREMsbtc7D4Fdv4idewlnqeQT/v51J4HIXzuDKqTXlMJpOxGSVTUEEVERGRxy85EX7uCfERUKAqNPyQHzeeYc2Razia7fi+c2U8nB2MTimZhAqqiIiIPH6r34fLe8DZC9pNY/elGD5fcRSA95uVoVwBnXcq/08FVURERB6vw0tg+wTbuNVEbjv48fqcPSRbrDxfwZ+uNQoZm08yHRVUEREReXxunIDFfW3j2m9gKd6YgfP3cTkinsC8boxqrfNO5U4qqCIiIvJ4JETDvK6QGAWF68BTw5m44TTrjl3Hyd523qm7zjuVu1BBFRERkUfPaoXf3oDrRyGXH7Sdys4LkXyx6hgAHzQvS5n8HgaHlMwqXQV11KhRVKtWDXd3d3x9fWnZsiXHjh3719dMnjyZunXrkjt3bnLnzk3Dhg3ZsWNHmm169uyJyWRK82jSpEn6P42IiIhkDjt/hEMLwGSGdtO5afLi9Tl7SbFYaVkxPx2rBRidUDKxdBXU9evX07dvX7Zt28bq1atJSkrimWeeISYm5p6vCQ0NpVOnTqxbt46tW7cSEBDAM888w6VLl9Js16RJE65cuZL6mDt37oN9IhERETHWhZ2wYpht/MzHWAKe4M35+wmLjCfIx41PW+m8U/l3JqvVan3QF1+/fh1fX1/Wr19PvXr17us1KSkp5M6dm++++47u3bsDtj2o4eHhLF68+L7eIyEhgYSEhNTlyMhIAgICiIiIwMNDhwtEREQME3MDJtaDyEtQpgW0m8H3oacYs/IYzg52LO5bm1J++l2dE0VGRuLp6Xlffe2hzkGNiIgAwNvb+75fExsbS1JS0h2vCQ0NxdfXl5IlS/Lqq69y8+bNe77HqFGj8PT0TH0EBOgwgYiIiOEsKbCwt62c5ikOzb9j25lbjP3feacfNS+ncir35YH3oFosFpo3b054eDibNm2679e99tprrFy5kj///BNnZ2cAQkJCcHV1JTAwkFOnTvHOO++QK1cutm7ditlsvuM9tAdVREQkE1r7MWz8Ahxcoc8fXHcJ4rlvNnItKoHWlQswtl2wDu3nYOnZg2r/oF+kb9++HDp0KF3l9LPPPiMkJITQ0NDUcgrQsWPH1HH58uWpUKECRYsWJTQ0lKeffvqO93FycsLJyelBo4uIiMijdmyFrZwCNP+WlLyleHPqDq5FJVDcNxeftCyncir37YEO8ffr14+lS5eybt06ChYseF+v+eKLL/jss89YtWoVFSpU+Ndtg4KCyJs3LydPnnyQeCIiIpKRbp2BX16yjau/DOXb8v26k2w6eQMXBzPju1TG1fGB94lJDpSufy1Wq5XXX3+dX375hdDQUAIDA+/rdaNHj+bTTz9l5cqVVK1a9T+3v3jxIjdv3sTf3z898URERCSjJcXB/O4QHwEFq8Ezn7Dl1A3GrTkOwCcty1E8n7vBISWrSdce1L59+zJ79mzmzJmDu7s7YWFhhIWFERcXl7pN9+7dGTZsWOry559/zvvvv8/UqVMpUqRI6muio6MBiI6O5u2332bbtm2cPXuWtWvX0qJFC4oVK0bjxo0f0ccUERGRx+L3tyHsALjmgXYzuBZrof/cfVis0L5qQdpUub8jrSJ/l66C+sMPPxAREUGDBg3w9/dPfcybNy91m/Pnz3PlypU0r0lMTKRt27ZpXvPFF7bzVMxmMwcOHKB58+aUKFGC3r17U6VKFTZu3KjzTEVERDKzPTNh7yww2UHbqSTl8qffnL3ciE6glJ87HzYvZ3RCyaLSfYj/v4SGhqZZPnv27L9u7+LiwsqVK9MTQ0RERIx2ZT8sG2QbP/kuBDVgzO9H2HH2Frmc7BnfpTIujnfOxCNyPx5qHlQRERHJgeJuw7xukJIAJZpAnYGsOBTGpA2nAfiiXQWCfHIZHFKyMhVUERERuX8WCyx6GcLPgVdhaDWBM7fiePvn/QD0qRtIk3K6yFkejgqqiIiI3L+NY+HESjA7QYdZxJk9eHX2bqISkqlWJDeDm5QyOqFkAyqoIiIicn9OrIZ1n9rGz43F6leB95cc4mhYFHlzOfFd58o4mFUt5OHpX5GIiIj8t1unYWFvwApVekLlbszbeYEFuy9iZ4JvO1Uin4fzf72LyH1RQRUREZF/lxgDIV3/fzL+pqM5dCmC4b/+CcCgxiWpWTSPwSElO1FBFRERkXuzWuHX/nDtT3DzhfYziUi049WfdpOYbKFhaV9eqVfU6JSSzaigioiIyL1tGw+HFoCdPbSfgSWXPwPn7+PCrTgCvF0Y264idnYmo1NKNqOCKiIiInd3ZgOset82fuZTKFyLH9afYu3Razja2/FDlyp4ujoYm1GyJRVUERERuVPERfj5BbCmQIUOUONltpy6wdhVxwD4qHlZyhXwNDikZFcqqCIiIpJWUrztTlGxN8CvPDw/jrDIBPrP3YvFCm2rFKRDtQCjU0o2poIqIiIi/89qhd8HweU94JIbOvxEktmZfnP2cCM6kVJ+7nzcohwmk847lcdHBVVERET+3+5psHcWmOyg7VTIXZjPlx9l17nbuDvZM6FrFVwczUanlGxOBVVERERsLuyA3wfbxk+9D0WfYvnBK/y46QwAY9oFUySvm4EBJadQQRURERGIugrzu4MlCUo3hzpvcup6NG8vOADAS/WCaFLOz+CQklOooIqIiOR0KUnwc0+IugI+paDleKITU3hl1m6iE5KpHujN241LGp1SchAVVBERkZxu5btwfgs4eUCH2VgdczF4wX5OXIsmn4cT33eujINZlUEyjv61iYiI5GT7Q2DHRNu41UTIW5xJG07z+8EwHMwmxnepgo+7k7EZJcdRQRUREcmpruyH396wjesNhlLPsuXkDT5fcRSA4c3KUqVwbgMDSk6lgioiIpITxdyEkK6QHA/Fn4EGw7gUHke/v03G37VGIaNTSg6lgioiIpLTpCTBzz0g4jzkDoTWk4hPsfLa7N3cikmkXAEPPmmpyfjFOCqoIiIiOc3Kd+HsRnDMBZ3mgktuPvj1T/ZfjMDL1YEfulTB2UGT8YtxVFBFRERykj0z//+iqNaTwLc0c3ecJ2TnBUwm+KZjJQK8XY3NKDmeCqqIiEhOcWEHLB1oGz/5LpR6jn0Xwhmx5E8ABj1TknolfAwMKGKjgioiIpITRF6GeV3/d6eoZlB3EDeiE3h19m4SUyw8UyYfrzUoanRKEUAFVUREJPtLioeQLhB9FXzLQMsJJFvh9Tl7uRIRT1BeN8a2D9ZFUZJpqKCKiIhkZ1YrLH0TLu8Bl9zQcQ445WLMymNsPX0TV0czE7tVwd3ZweikIqlUUEVERLKzbT/A/jlgMkO76eAdyLIDV5i44TQAX7QLpng+d2MzivyDCqqIiEh2dWodrHrXNm78KQQ14MTVKN5esB+Al+sH8Wx5fwMDitydCqqIiEh2dOs0/NwTrBYI7gw1XiEyPomXZ+0mNjGFWkXz8PYzJY1OKXJXKqgiIiLZTUIUzO0M8eFQoAo8/xUWK7w1fz+nb8SQ39OZbztVwt6sGiCZk/5lioiIZCcWC/zyClw/Arn8oMNP4ODM9+tOsvrwVRzNdvzQtQp5cjkZnVTknlRQRUREspMNY+DoUjA7QofZ4OHPmsNX+XLNcQA+blmW4AAvYzOK/AcVVBERkeziyFIIHWkbP/8VBFTj5LVoBszbh9UK3WsWpkO1QsZmFLkPKqgiIiLZwbUj8MvLtnGNV6BSVyLjk3hp5i6iE5KpHujN+8+XMTajyH1SQRUREcnqYm/B3E6QGA1F6sIzn2CxWBkQso/TN2Lw93RmfJfKOOiiKMki9C9VREQkK0tJgp97wO0z4FUI2s0AswNfrTnOH0ev4WRvx6RuVcmri6IkC1FBFRERycqWD4EzG8AxF3QKAbc8LD94hW//OAnAZ23KU76gp8EhRdJHBVVERCSr2jEZdk0BTNDmR8hXlqNhkbz1s+1OUS/WCaRVpYLGZhR5ACqoIiIiWdGpdba9pwANP4CSTQmPTeSlmbY7RdUuloehTUsZGlHkQamgioiIZDU3T9nOO7WmQHAnqP0GySkWXp+7l/O3YgnwduG7TpV1pyjJsvQvV0REJCuJC4c5HSA+AgpWh+fHgcnE6JXH2HjiBi4OZiZ1q0puN0ejk4o8MBVUERGRrCIlGRa8ADdPgEdB6Gi7jemSfZeYtOE0AF+0C6a0v4fBQUUejgqqiIhIVrHqXTj1Bzi4Qqe5kMuXQ5ciGLzgAACvNSjKcxX8DQ4p8vBUUEVERLKCXdNg+wTbuNVE8K/AjegEXpq5i4RkC0+W9OGtZ0oam1HkEVFBFRERyezObITfB9nGT70HZZqTlGKh7097uBwRT2BeN8Z1rITZzmRsTpFHRAVVREQkM7t1BuZ3A0sylGsLdW1F9ZOlh9l+5ha5nOyZ3L0Kni4OBgcVeXRUUEVERDKr+EiY2xHibkP+ytDiOzCZmL/zAjO2ngPgy/bBFPN1NzioyKOlgioiIpIZWVJgYW+4fhTc80PHOeDgwq6zt3h38UEABjQszjNl/QwOKvLoqaCKiIhkRquHw4lVYO8CneaAhz8Xb8fy8qzdJKVYaVrOj/5PFTc6pchjoYIqIiKS2eydDVu/s41bjof8lYhJSKbPzN3cjEmkjL8HY9sHY6eLoiSbUkEVERHJTM5tgd8G2Mb1h0K51lgsVt6av58jVyLJm8uRyT2q4upob2hMkcdJBVVERCSzuHkKQrqAJQnKtID6QwAYt+Y4K/4Mw9Fsx8RuVSjg5WJwUJHHSwVVREQkM4i7DXM6QNwt2xX7LSeAnR1LD1zmmz9OAvBpq3JUKextcFCRx08FVURExGgpSTC/O9w8AR4FbbcxdXTl4MUIBv28H4A+dQNpVzXA4KAiGUMFVURExEhWKyx9E85sAMdc0HkeuPtxLTKePjN3EZ9koUFJH4Y2LW10UpEMo4IqIiJipC3fwN5ZYLKDtlPBrxzxSSm8NGs3YZHxFPVx45tOuo2p5CwqqCIiIkY58husHmEbN/kMSjTGarXyzqKD7LsQjqeLA1N6VMPDWbcxlZxFBVVERMQIl/fCwj6AFar1gRovAzBxw2kW7b2E2c7E+C6VKZLXzdicIgZQQRUREcloERdhTkdIjoNiDW17T4G1R67y+YqjAIxoVobaxfIamVLEMCqoIiIiGSkh2lZOo8PAtwy0nQZme45fjeKNkH1YrdC5RiG6PVHY6KQihlFBFRERySiWFFjYG64eBDdf2xX7zh7cjknkxRm7iE5I5okgbz5sXhaTSRdFSc6lgioiIpJRVr0Hx1eAvbNtrlOvQiSlWHj1p92cvxVLgLcL47tUwcGsX8+Ss+k7QEREJCPs/BG2jbeNW02AglWxWq188OufbDt9CzdHM1N6VMPbzdHYnCKZgAqqiIjI43ZyDfw+2DZ+6n0o2wqAaZvP8tP285hM8HXHSpTI525gSJHMQwVVRETkcbp6GH5+AawpENwZ6r4FwB9Hr/LJssMADGtaioZl8hmZUiRTUUEVERF5XKKvwZwOkBAJhWtDs6/BZOLIlUhen7MXixU6VgugT90go5OKZCoqqCIiIo9DYizM7QQR58E7CDrMBntHrkXF03v6TmISU6hVNA8ftyynK/ZF/kEFVURE5FGzpMCiPnBpF7jkhs4/g6s38Ukp9Jm5m8sR8QTldeMHXbEvclf6rhAREXnUVr0HR5eC2RE6zoG8xbBYrLw1fz/7L4Tj5erA1J7V8HR1MDqpSKaUroI6atQoqlWrhru7O76+vrRs2ZJjx4795+t+/vlnSpUqhbOzM+XLl+f3339Ps95qtTJ8+HD8/f1xcXGhYcOGnDhxIn2fREREJDPYNiHtdFKFawHw1ZrjLDt4BQeziQldq1Akr5uBIUUyt3QV1PXr19O3b1+2bdvG6tWrSUpK4plnniEmJuaer9myZQudOnWid+/e7N27l5YtW9KyZUsOHTqUus3o0aP55ptvmDBhAtu3b8fNzY3GjRsTHx//4J9MREQkox1dBiuG2sYNP4BybQBYtOci3/5xEoCRrcrzRFAegwKKZA0mq9VqfdAXX79+HV9fX9avX0+9evXuuk2HDh2IiYlh6dKlqc898cQTVKxYkQkTJmC1WsmfPz9vvfUWgwYNAiAiIoJ8+fIxffp0Onbs+J85IiMj8fT0JCIiAg8Pjwf9OCIiIg/u4m6Y/hwkx0GVF+D5r8BkYufZW3SZvJ3EFAuvNijKkCaljE4qYoj09LWHOgc1IiICAG9v73tus3XrVho2bJjmucaNG7N161YAzpw5Q1hYWJptPD09qVGjRuo2/5SQkEBkZGSah4iIiGFun4W5HWzltFgjePYLMJk4dzOGl2buIjHFQtNyfrz9TEmjk4pkCQ9cUC0WCwMGDKB27dqUK1funtuFhYWRL1/ayYfz5ctHWFhY6vq/nrvXNv80atQoPD09Ux8BAQEP+jFEREQeTuwtmN0WYq6DXwVoNw3M9kTEJdFr+k5uxyZRvoAnX7aviJ2dppMSuR8PXFD79u3LoUOHCAkJeZR57suwYcOIiIhIfVy4cCHDM4iIiJCcAPO6ws0T4FEQOs8HJ3eSUiz0/WkPp67H4O/pzI89quLiaDY6rUiWYf8gL+rXrx9Lly5lw4YNFCxY8F+39fPz4+rVq2meu3r1Kn5+fqnr/3rO398/zTYVK1a863s6OTnh5OT0INFFREQeDYsFFr8G5zaDkwd0+Rk8/LFarYz49U82nbyBq6OZH3tUJZ+Hs9FpRbKUdO1BtVqt9OvXj19++YU//viDwMDA/3xNzZo1Wbt2bZrnVq9eTc2aNQEIDAzEz88vzTaRkZFs3749dRsREZFMZ90ncGgB2NlDh1mQrwwAUzefZc7285hM8HXHSpTN72lwUJGsJ117UPv27cucOXNYsmQJ7u7uqeeIenp64uLiAkD37t0pUKAAo0aNAuCNN96gfv36jB07lueee46QkBB27drFpEmTADCZTAwYMIBPPvmE4sWLExgYyPvvv0/+/Plp2bLlI/yoIiIij8ju6bBxrG3c7BsIagDA2iNX+WTZYQDeaVqaRmXy3f31IvKv0lVQf/jhBwAaNGiQ5vlp06bRs2dPAM6fP4+d3f/vmK1VqxZz5szhvffe45133qF48eIsXrw4zYVVgwcPJiYmhpdeeonw8HDq1KnDihUrcHbWIREREclkTqyBpQNt4/pDoFIXAP68HEH/uXuxWqFT9QBerPvfRxlF5O4eah7UzELzoIqISIYIOwhTm0BiNAR3gpY/gMnE5fA4Wo3fzNXIBGoXy8P0F6rjYNbdxEX+LsPmQRUREckxIi7BT+1t5TSwnu3QvslEZLxtOqmrkQmUyJeL8V2qqJyKPCR9B4mIiPyX+AiY0x6iLoNPaWg/C+wdU6eTOhoWhY+7E1N7VsPTxcHotCJZngqqiIjIv0lOgJAucPUQ5MoHXeaDixdWq5X3fjnExhO26aSm9axGwdyuRqcVyRZUUEVERO7FYoHFr8LZjeDoDl0WgFchAL5fd5J5uy5gZ4JvO1WiXAFNJyXyqKigioiI3Mvq9+HQwv+f69S/AgCL917ii1XHAfiweVmeLq3ppEQeJRVUERGRu9n6PWz9zjZuMR6KPgnAttM3GbzgAAAv1QuiW80iBgUUyb5UUEVERP7p0EJY+Y5t3PBDCO4AwMlrUbw0cxeJKRaalvNjaJNSBoYUyb5UUEVERP7uzEb45RXbuPrLUPsNAK5HJdBz2k4i45OpXMiLrzpUxM7OZGBQkexLBVVEROQvV/+0XbGfkgilm0OTUWAyEZeYwoszd3HxdhyF87gyuXtVnB3MRqcVybZUUEVERAAiLsLstpAQAYVqQevJYGcmxWLljZC97L8QjperA9N6ViNPLiej04pkayqoIiIicbdt5TTqMviUgk5zwMEZgE+XHWHV4as42tsxuXtVgnxyGRxWJPtTQRURkZwtKd52WP/6EXD3t8116pIbgGmbzzB18xkAxrYLploRbyOTiuQYKqgiIpJzWVLgl5fg3GZw8oCuC8ErAIBVf4bx0dLDAAxpUopmwfmNTCqSo6igiohIzmS1wophcHgJmB2h40+QrywA+y6E0z9kL1YrdK5RiFfqBxkcViRnUUEVEZGcacs3sGOibdxqAgTWA+DMjRh6Td9JfJKF+iV8+Kh5WUwmTSclkpFUUEVEJOc5MB9WD7eNG4+Ecm0A21ynPabu4FZMIuULeDK+S2XszfpVKZLR9F0nIiI5y6k/YPFrtnHNflCzLwAxCcn0mr6T87diCfB2YWrParg52RsYVCTnUkEVEZGc49JuCOkKliQo2xoafQxAUoqF137aw8FLEXi7OTKzVw183DXXqYhRVFBFRCRnuHHCNtdpUgwEPQmtJoKdHVarlWGLDrL++HVcHMxM7VmNwLxuRqcVydFUUEVEJPuLvAyzWkHcLchfCTrMAntHAL5cfZwFuy9itjPxfZdKVAzwMjariKigiohINhd7C2a1hogLkKeYbSJ+J3cAZm87x7d/nATg05bleKpUPiOTisj/qKCKiEj2lRgLczv+/12iuv0CbnkBWPlnGMOXHAJgQMPidKxeyMikIvI3KqgiIpI9pSTBzz3hwnZw9oSui8DLVkJ3n7tF/7l7sVihU/UA3ni6uLFZRSQNFVQREcl+LBb49XU4sRLsnaHzfMhXBoCT16LpPWMXCckWni7ly8ctymkifpFMRgVVRESynzXDYf9cMJmh3Qwo9AQA1yLj6TF1B+GxSVQM8OLbzpU0Eb9IJqTvShERyV42fw1bvrWNW3wHJZsAEBWfRM9pO7kUHkdgXjem9KiKq6Mm4hfJjFRQRUQk+9j70//fwrTRx1CxMwCJyRZemb2bw1ciyZvLkRkvVCdPLk3EL5JZqaCKiEj2cGy57bxTgFqvQ+3+AFgsVgYv2M/mkzdxdTQzrWd1CuVxNTCoiPwXFVQREcn6zm21XbFvTYHgztDwo9RVn684yuJ9l7G3M/FD1yqUL+hpXE4RuS8qqCIikrVd/RPmdoDkeCjeGJp/A3a2X28T159i4obTAHzWpgL1S/gYmVRE7pMKqoiIZF23z8HsNhAfAQE1oN10MDsA8POuC4xafhSAYU1L0bZKQQODikh6qKCKiEjWFHUVZrWEqCvgUxo6zwNH27mlaw5fZeiigwC8XC+Il+sXNTCoiKSXCqqIiGQ9cbdhdmu4ddp2d6hui8AlNwA7ztyi75w9pFistK1SkKFNSxkcVkTSSwVVRESylsQY+Kk9XD0EufJBt8XgkR+AI1ci6T1jZ+pdoj5rXV53iRLJglRQRUQk60hOgJAucHEHOHtBt18gj+3w/fmbsXSfuoOo+GSqFcnN910q6y5RIlmUvnNFRCRrSEmGhS/C6XXg4AZdFkC+sgBcj0qg29TtXI9KoJSfOz/2qIazg9ngwCLyoFRQRUQk87NaYekbcORXMDtCx58goBoAkfFJ9Ji6g3M3YymY24WZvarj6eJgcGAReRgqqCIikrlZrbDqPdg7G0x20GYKFH0SgPikFPrM2JV6C9PZvWvg6+FscGAReVgqqCIikrlt+AK2fmcbN/8OyjQHIDnFQv+5e9l+5ha5nOyZ/kJ1iuR1MzCoiDwqKqgiIpJ5bZ8E6z6xjRuPgkpdALBarby3+BCrDl/F0WzH5O5VKVdAtzAVyS5UUEVEJHPaPw+Wv20b1x8CNV9LXfXFqmOE7LyAnQm+6VSRmkXzGBRSRB4HFVQREcl8jv4Oi1+1jau/DA2Gpa6asukM3687BcCnrcrTpJy/EQlF5DFSQRURkczlzAb4uSdYUyC4EzT5DP432f4vey/y8dLDALzduCSdqhcyMKiIPC4qqCIiknlc2g1zO0FKApR63nZRlJ3tV9Xqw1cZ9PMBAHrVDuS1BkWNTCoij5EKqoiIZA7XjsLsNpAYDYH1bNNJme0B2HLyBn3n7CHFYqV1pQK891xp3cJUJBtTQRUREePdPAUzW0DcbShQBTrOAQfbfKZ7z9/mxZm7SEy28EyZfIxuWwE7O5VTkexMBVVERIwVfsFWTqPDwLeM7RamTu4AHLkSSc9pO4lNTKFOsbx827kS9mb96hLJ7vRdLiIixom6aiunERcgTzHovgRcvQE4eyOGblN2EBGXROVCXkzqXgUne7PBgUUkI6igioiIMWJu2srprVPgWchWTnP5AnA5PI4uP27nRnQCpf09mNazOq6O9gYHFpGMooIqIiIZLy4cZreC60fA3R96/AqeBQG4EZ1A1ynbuRQeR1BeN2b2qo6nq4OxeUUkQ6mgiohIxkqIhjnt4cp+cM0L3X8F70AAIuKS6D5lB6evx5Df05lZL9bAx93J4MAiktFUUEVEJOMkxUFIJ7iwHZy9oPti8CkBQGxiMr2n7+TwlUjy5nJk9os1KODlYmhcETGGCqqIiGSM5ESY3912pyhHd+i6CPzKA5CQnMLLs3az69xtPJztmdmrBkE+uQwOLCJGUUEVEZHHLyUZFvaGE6vA3gU6z4OCVQBITrHwxtx9bDxxAxcHM9NeqE6Z/B4GBxYRI6mgiojI42WxwJK+cORXMDtCx5+gSO3/rbIydNFBVvwZhqPZjsndq1KlcG6DA4uI0VRQRUTk8bFa4fe34EAImMzQbjoUe/p/q6x8tPQwC3ZfxGxn4tvOlahTPK+xeUUkU1BBFRGRx8NqhVXvwa6pgAlaT4JSz6Wu/mr1caZvOQvAmLYVaFzWz5icIpLpqKCKiMjjsW4kbP3ONm7xHZRvm7pqwvpTfPPHSQA+alGW1pULGpFQRDIpFVQREXn0Nn0FG0bbxs9+AZW6pq6atvkMny0/CsDbjUvSvWYRAwKKSGamgioiIo/W1vGw5gPbuOGHUL1P6qo528/z4W+HAej/VDH6PlnMgIAiktmpoIqIyKOzYzKsHGYb1x8CdQakrlq4+yLvLj4IwMv1gnizUQkDAopIVqCCKiIij8auafD7INu4zkBoMCx11W/7L/P2gv1YrdCzVhGGNi2FyWQyKKiIZHYqqCIi8vD2zIKlA2zjWq/D08PhfwV05Z9hDJi3D4sVOlYLYPjzZVROReRfqaCKiMjD2R8Cv75uG9d4FRp9nFpO1x27Rr85e0ixWGldqQCftiqPnZ3KqYj8OxVUERF5cAcXwOJXAStUexGajEotp5tP3uCVWbtJSrHyXHl/RretgFnlVETugwqqiIg8mD8Xw6KXwGqByj2g6ZjUcrrjzC1enLGLhGQLDUvnY1zHitib9StHRO6PflqIiEj6HV0GC3uDNQUqdoHnx4Gd7VfKvgvh9Jq+k7ikFOqX8OH7LpVwUDkVkXTQTwwREUmfYytgfg+wJEP59tD829RyeuhSBN2nbCc6IZmaQXmY2K0KTvZmgwOLSFajgioiIvfv5BqY3w0sSVC2NbT8AexsBfRYWBTdpmwnMj6ZqoVz82OPqjg7qJyKSPqpoIqIyP05HQohXSAlEUo3g9aTwGxvW3U9mi4/bud2bBLBBT2Z9kI13Jzsjc0rIllWugvqhg0baNasGfnz58dkMrF48eJ/3b5nz56YTKY7HmXLlk3d5oMPPrhjfalSpdL9YURE5DE5sxHmdITkeCjRFNpMBbMDAOdvxtJ58nZuRCdQ2t+DGb2q4+7sYHBgEcnK0l1QY2JiCA4O5vvvv7+v7b/++muuXLmS+rhw4QLe3t60a9cuzXZly5ZNs92mTZvSG01ERB6Hc1thTgdIjoNijaD9DLB3BGzltOOkrYRFxlPcNxeze1fHy9XR4MAiktWl+/hL06ZNadq06X1v7+npiaenZ+ry4sWLuX37Ni+88ELaIPb2+Pn5pTeOiIg8Thd2wE9tISkGgp6EDrPB3sm26lYsnSZv43JEPEE+bvzUpwZ5cjkZHFhEsoMMPwd1ypQpNGzYkMKFC6d5/sSJE+TPn5+goCC6dOnC+fPn7/keCQkJREZGpnmIiMgjdn47zGoNidFQpC50nAMOzgBcvB1Lx0nbuBQeR1BeN0L6PIGvu7PBgUUku8jQgnr58mWWL1/Oiy++mOb5GjVqMH36dFasWMEPP/zAmTNnqFu3LlFRUXd9n1GjRqXumfX09CQgICAj4ouI5Bznt8Ps1pAYZSunneeBoysAl8LjUstpYF435r70BL4eKqci8uiYrFar9YFfbDLxyy+/0LJly/vaftSoUYwdO5bLly/j6Hjvc5TCw8MpXLgwX375Jb17975jfUJCAgkJCanLkZGRBAQEEBERgYeHR7o/h4iI/E1qOf3fntPO81PL6eXwODpM2sqFW3EUyeNKyEs18fNUORWR/xYZGYmnp+d99bUMmwPEarUydepUunXr9q/lFMDLy4sSJUpw8uTJu653cnLCyUnnOYmIPHLnt8HsNvcspx0nbePCrTgK53Fl7ktPqJyKyGORYYf4169fz8mTJ++6R/SfoqOjOXXqFP7+/hmQTEREgLTlNLBemnJ6JSKOTpO3cf5WLIW8XZnb5wn8PV0MDiwi2VW6C2p0dDT79u1j3759AJw5c4Z9+/alXtQ0bNgwunfvfsfrpkyZQo0aNShXrtwd6wYNGsT69es5e/YsW7ZsoVWrVpjNZjp16pTeeCIi8iDObf1bOa0Pnf7/nNOwiHg6TdrGuZuxBHi7MPelJ8jvpXIqIo9Pug/x79q1iyeffDJ1eeDAgQD06NGD6dOnc+XKlTuuwI+IiGDhwoV8/fXXd33Pixcv0qlTJ27evImPjw916tRh27Zt+Pj4pDeeiIik11/lNCnmf+U0JLWcXo2Mp9PkbZz9XzkNeakmBVROReQxe6iLpDKL9Jx0KyIif/P3chrUADrOTS2n1yLj6ThpG6dvxFAwtwshLz1BwdyuxuYVkSwrPX0tw+dBFRGRTOLclnuX06h4Ok62ldMCXi7M7aNyKiIZJ8Ou4hcRkUzk3BaY3fb/y2mnEHCwHbq/HpVAp0nbOH09hvyezoS89AQB3iqnIpJxtAdVRCSnObv5b+X0yTvL6eRtnLoeg7+nMyEv1VQ5FZEMpz2oIiI5ydnN8FO7v5XTuanl9FpkPJ1/3M7Ja9H4edj2nBbKo3IqIhlPBVVEJKf4ezkt+hR0nJNaTsMi4un8v3NO/T2dmdvnCQrncTM4sIjkVCqoIiI5welQmNMRkuPuKKeXw22T8J+7GZt6QZT2nIqIkVRQRUSyuxNrYF4XSI6HYo2gw6zUcnrhViydf7TdvjTA24U5L+qCKBExngqqiEh2dmw5zO8OKYlQ8jloNw3snQA4fzOWTpO3cSk8jiJ5XJnTR3eIEpHMQQVVRCS7OrwEFvQCSzKUaQFtpoDZAYAzN2LoNGkbYZHxBOV1Y06fJ/DzdDY4sIiIjQqqiEh2dHABLHoJrClQri20mghm24/8k9ei6Tx5G9eiEijmm4s5fWrg665yKiKZhwqqiEh2s28uLHkNrBYI7gwtvgM7MwDHr0bRefJ2bkQnUMrPndkv1iBvLieDA4uIpKWCKiKSneyZCb/2B6xQuQc8Pw7sbPdkOXIlkq4/budmTCJl/D2Y/WINvN0cDY0rInI3KqgiItnFzh9h2Vu2cbU+0HR0ajk9dCmCrlO2Ex6bRPkCnszqXR0vV5VTEcmcVFBFRLKDbT/AiqG28RN9ofGnYDIBcOBiOF1/3E5kfDLBAV7M7FUdTxcHA8OKiPw7O6MDiIjIQ9o07v/LaZ0305TTvedv0+V/5bRyIS9m9VY5FZHMT3tQRUSysvVjYN0ntnH9IdBgWGo53XX2Fj2n7SQ6IZnqRbyZ+kI1cjnpx76IZH76SSUikhVZrbBuJGwYbVt+6j2o93bq6i0nb/DizF3EJqZQMygPU3pWxdVRP/JFJGvQTysRkazGaoU1I2Dz17blRh9D7f6pq/84epVXZu8hMdlC3eJ5mdStKi6OZoPCioiknwqqiEhWYrHA8rdtV+wDNPkcnngldfWyA1d4I2QvyRYrjcrk47vOlXCyVzkVkaxFBVVEJKtISYZfX4f9cwATNBsHVXqmrl6w+yKDF+zHYoXmwfkZ2z4YB7OuhRWRrEcFVUQkK0hOhEUvwuElYDLbbl1aoV3q6llbz/L+kj8B6FA1gJGty2O2MxmVVkTkoaigiohkdklxML87nFgFZkdoOw1KP5+6euL6U4xafhSAnrWKMPz5MtipnIpIFqaCKiKSmSVEw9yOcHYj2LtAx9lQrCEAVquVr9ac4Ju1JwDo+2RRBj1TEpNJ5VREsjYVVBGRzCouHH5qBxd3gKM7dJ4HRWoDtnL66bIj/LjpDABvNy5J3yeLGRhWROTRUUEVEcmMYm7ArJYQdhCcvaDbIihQBQCLxcp7Sw4xZ/t5AEY0K8MLtQONyyoi8oipoIqIZDaRl2FmS7hxDNx8oNti8CsHQHKKhcELDrBo7yVMJvi8dQXaVwswNK6IyKOmgioikpncPgczm8Pts+BRALr/Cnlth+4Tky30n7uXFX+GYbYz8VWHijQPzm9sXhGRx0AFVUQks7hxAmY0h6jLkDsQui+B3IUBiE9K4ZXZuwk9dh1Hsx3fda7EM2X9DA4sIvJ4qKCKiGQGYYds55zGXAefUrbD+h7+AEQnJPPijJ1sO30LZwc7JnevSt3iPobGFRF5nFRQRUSMdnE3zG4N8eHgV8FWTt3yAHArJpGe03Zw4GIEuZzsmdqzGtUDvQ2NKyLyuKmgiogY6cwGmNsJEqMhoAZ0ng8uXgBcDo+j25TtnLoeQ25XB2b0qk6Fgl6GxhURyQgqqCIiRjm6DH5+AVISILAedJwLTrkAOH09mm5TdnApPA5/T2dm9a5OMV93gwOLiGQMFVQRESPsmwtL+oI1BUo9D22mgIMzAIcuRdBj6g5uxiQSlNeNWS/WoICXi8GBRUQyjgqqiEhG2/YDrBhqG1fsAs2+AbPtx/H20zd5ccYuohKSKZvfgxm9qpM3l5OBYUVEMp4KqohIRrFaIXQUrP/ctvxEX3jmE7CzA+CPo1d5dfYeEpItVA/05sceVfFwdjAwsIiIMVRQRUQygsVi22u6Y6Jt+an3oO4gMJkAWLz3EoN+3k+yxcrTpXz5vktlnB3MBgYWETGOCqqIyOOWkmQ73/TAPNvys19A9T6pq2dsOcuIX/8EoFWlAoxuWwEHs50RSUVEMgUVVBGRxykpznal/vHlYGcPLSdAhXYAWK1Wvll7kq/WHAegZ60iDH++DHZ2JiMTi4gYTgVVRORxiY+0zXF6bhPYO0P7mVCiMQAWi5WPlh5m+pazAAxoWJw3ni6OyaRyKiKigioi8jjE3LDdHerKfnDygE4hUKQ2AEkpFoYsOMCivZcA+KBZGXrWDjQyrYhIpqKCKiLyqIVfgFmt4OYJcM0LXRdC/ooAxCel0G/OXtYcuYrZzsQX7SrQqlJBY/OKiGQyKqgiIo/SjRMwsyVEXgSPgtB9MeQtDkBEXBJ9Zuxix9lbONrbMb5zZRqWyWdoXBGRzEgFVUTkUbm8F2a3hdgbkKe4rZx62vaOhkXE02PqDo5djcLdyZ7JParyRFAeY/OKiGRSKqgiIo/CqXUwryskRoN/MHRdBG55ATh5LYruU3ZwOSIeX3cnpr9QnTL5PQwOLCKSeamgiog8rEOLYNFLYEmCwHrQ4SdwthXQ3edu03vGTsJjkwjK68aMXtUJ8HY1OLCISOamgioi8jC2T4LlgwErlGkJrSeBvRNgu3Xpaz/tIT7JQnCAF9N6VsPbzdHQuCIiWYEKqojIg7BaYd2nsGGMbblaH2j6OdjZbk86f9cFhi06SIrFSoOSPozvUhlXR/3IFRG5H/ppKSKSXinJsOxN2DPTtvzke1BvEJhMWK1WxoeeYszKYwC0qVyQz9qU161LRUTSQQVVRCQ9kuJg4YtwdCmY7OC5L6HqC8Cdd4d6pX5RhjQpqbtDiYikkwqqiMj9igu33br0/BYwO0GbH6FMcwASklMYOH8/yw5cAeD958vQu47uDiUi8iBUUEVE7kfkFZjdBq79+b9bl86FInUAiIpP4uVZu9ly6iYOZhNj21ekeXB+gwOLiGRdKqgiIv/lxknbrUsjzkOufLZbl/qVB+BaVDw9p+7k8JVI3BzNTOxWlTrF8xocWEQka1NBFRH5N5d2w0/tIPYmeAdBt18gdxEAztyIofvU7Vy4FUfeXI5Mf6E65Qp4GptXRCQbUEEVEbmXk2thXjdIigH/itBlAeTyAWDP+du8OGMXt2ISKZzHlZm9qlM4j5uxeUVEsgkVVBGRuznwMyx+1XZ3qKAG0GE2OLkDsOJQGG+E7CUh2UL5Ap5M7VkNH3cnY/OKiGQjKqgiIn9ntcLmr2HNCNtyuTbQcgLY2+4ANX3zGT5cehirFZ4q5cu3nSrh5qQfpSIij5J+qoqI/MWSAiuGwo5JtuUn+sIzn4CdHRaLlVHLjzB54xkAOtcoxEfNy2KvCfhFRB45FVQREUg7AT9A45FQsy8A8UkpvDV/P8sO2uY4HdykJK/WL6oJ+EVEHhMVVBGR2Fu2CfgvbAOzI7SaCOVaAxAem0ifmbvYefY2DmYTY9oG07JSAYMDi4hkbyqoIpKz3T5nm4D/5glw9oSOc1In4L9wK5Ye03Zw+noM7s72TOxWhVpFNcepiMjjpoIqIjnXlf22OU6jr4JHAdsE/L6lAThwMZxe03dxIzqB/J7OTHuhOiX93A0OLCKSM6igikjOdHItzO8OidHgWxa6LgAP2+1J/zh6lb4/7SUuKYXS/h5Mf6Ea+TycDQ4sIpJzqKCKSM6zbw78+jpYkiGwnm2OU2fbHaDmbD/Pe4sPYrFC3eJ5Gd+lMu7ODgYHFhHJWVRQRSTnsFph41j442Pbcvl20GI82DtitVoZs/IY40NPAdCuSkFGti6Pg6aREhHJcCqoIpIzpCTD8rdh11Tbcu034OkPwM6OhOQUhi48yC97LwEwoGFx3ni6uKaREhExiAqqiGR/ibGwoBccXw6YoOloqPESALdjEnl51m52nL2FvZ2Jka3L075qgLF5RURyOBVUEcneoq/D3I5waReYnaDNj1CmOQCnr0fTa/pOzt6Mxd3JnvFdK1O3uI/BgUVERAVVRLKv68fhp7YQfg6cvaBTCBSuCcC20zd5ZfZuwmOTKJjbhWk9q1E8n6aREhHJDFRQRSR7OrsZQjpDfDjkLgJdFkDe4gAs3H2RoYsOkJRipWKAF5O7V8XH3cnQuCIi8v9UUEUk+zkwH5b0hZREKFjNtufULS9Wq5WvVh/nmz9OAvBceX/Gtg/G2cFscGAREfm7dM+fsmHDBpo1a0b+/PkxmUwsXrz4X7cPDQ3FZDLd8QgLC0uz3ffff0+RIkVwdnamRo0a7NixI73RRCSns1ph/RhY1MdWTks3hx6/gVte4pNS6B+yL7Wc9n2yKN92qqRyKiKSCaW7oMbExBAcHMz333+frtcdO3aMK1eupD58fX1T182bN4+BAwcyYsQI9uzZQ3BwMI0bN+batWvpjSciOVVKEvzaD9Z9Yluu1R/azQAHF25GJ9B58jZ+238ZezsTo9tW4O3GpbCz0zRSIiKZUboP8Tdt2pSmTZum+wv5+vri5eV113Vffvklffr04YUXXgBgwoQJLFu2jKlTpzJ06NB0fy0RyWHiI2y3LT0dCiY7eHYMVHsRgJPXonhh+k4u3IrDw9meCd2qUKtoXmPziojIv8qwW6RUrFgRf39/GjVqxObNm1OfT0xMZPfu3TRs2PD/Q9nZ0bBhQ7Zu3XrX90pISCAyMjLNQ0RyqPALMKWxrZw6uEGneanldMvJG7Qav4ULt+Io5O3Kotdqq5yKiGQBj72g+vv7M2HCBBYuXMjChQsJCAigQYMG7NmzB4AbN26QkpJCvnz50rwuX758d5yn+pdRo0bh6emZ+ggI0KTaIjnS5X3w49Nw/Qjk8oNey6HEMwDM33mB7lN3EBWfTJXCufnltVoU881lbF4REbkvj/0q/pIlS1KyZMnU5Vq1anHq1Cm++uorZs2a9UDvOWzYMAYOHJi6HBkZqZIqktMcW2G7O1RSDPiWhS7zwbMgFouVMauO8UPoKQCaB+dndNsKuhhKRCQLMWSaqerVq7Np0yYA8ubNi9ls5urVq2m2uXr1Kn5+fnd9vZOTE05OmrNQJMfaMRmWDwarBYo+ZbsYytmDmIRkBs7fx8o/bT9P+j9dnDcbFsdk0sVQIiJZSYadg/p3+/btw9/fHwBHR0eqVKnC2rVrU9dbLBbWrl1LzZo1jYgnIpmVJQVWvgu/D7KV08rdofN8cPbgUngcbSdsZeWfV3E02/Fl+2AGNiqhcioikgWlew9qdHQ0J0+eTF0+c+YM+/btw9vbm0KFCjFs2DAuXbrEzJkzARg3bhyBgYGULVuW+Ph4fvzxR/744w9WrVqV+h4DBw6kR48eVK1alerVqzNu3DhiYmJSr+oXESEh2ja/6bHfbctPD4c6A8FkYve527w8azc3ohPIm8uRid2qUKWwt7F5RUTkgaW7oO7atYsnn3wydfmvc0F79OjB9OnTuXLlCufPn09dn5iYyFtvvcWlS5dwdXWlQoUKrFmzJs17dOjQgevXrzN8+HDCwsKoWLEiK1asuOPCKRHJoSIuwdwOEHYQzE7QcjyUbwvAL3svMmThQRKTLZTyc+fHHlUpmNvV4MAiIvIwTFar1Wp0iIcVGRmJp6cnEREReHh4GB1HRB6ly3thTkeIDgM3H+g4FwKqYbFY+WLVMcb/72KoZ8rk46sOFXFz0h2cRUQyo/T0Nf0kF5HM6/CvsOglSI4D3zLQKQRyFyYmIZk35+1j1WHbxVCvNSjKoGdK6s5QIiLZhAqqiGQ+Vits+grWfmhbLtYI2k4FZw8u3o7lxRm7OBoWhaO9HZ+3KU+rSgWNzSsiIo+UCqqIZC7JibD0Tdg327Zc/WVoPBLM9v+7GGoXN6ITyZvLiUndq1C5UG5j84qIyCOngioimUfsLZjXFc5tBpMdNB0N1fsAsGjPRYYuPEhiioXS/h782KMqBbxcDA4sIiKPgwqqiGQON07AnPZw6zQ4eUDbaVC8IRaLldErjzFhve1iqMZl8/Fle10MJSKSneknvIgY7/R6mN8N4iPAq5Bt8n3f0kQnJDMgZB9rjtguhur3ZDEGNiqhi6FERLI5FVQRMdbuGbBsIFiSoWB16DgHcvlw7mYMfWbu4vjVaBzt7RjdpgItKxUwOq2IiGQAFVQRMYYlBdaMgC3f2pbLtYUW34ODM5tO3KDvnD1ExCXh4+7ExG66GEpEJCdRQRWRjBcfabtt6fEVtuUG70D9wViBKRtPM/L3I1isEBzgxcSuVfDzdDY0roiIZCwVVBHJWLfOwNxOcP0I2Dvb9pqWb0t8UgrvLDrIor2XAGhTuSCftiqHs4PZ4MAiIpLRVFBFJOOc2Qjzu0PcLcjlB53mQIEqhEXE8/KsXey/GIHZzsS7z5bmhdpFMJl0MZSISE6kgioiGWPXNPh9kO1iqPyVbRdDefiz+9wtXpm9h+tRCXi5OvB958rULpbX6LQiImIgFVQRebxSkmHlMNgxybZcri20+A4cXAjZcZ73lxwiKcVKKT93JnWrSqE8rsbmFRERw6mgisjjE3sLfu4JZ9bblp96H+q+RZLFysdLDjFz6zkAmpbz44t2wZp8X0REABVUEXlcrh+HuR1sd4ZycIPWk6D089yMTuC1n/aw/cwtAN5qVIJ+TxXT+aYiIpJKBVVEHr0Tq2FBL0iIBM9C0Gku+JXjz8sRvDRzN5fC48jlZM9XHSrSqEw+o9OKiEgmo4IqIo+O1QrbxsOq98BqgUI1ocNscMvLr/svM3jBfuKTLATmdWNy9yoU83U3OrGIiGRCKqgi8mgkJ8DSgbBvtm25Ujd47kuSTfZ8vuwwkzeeAaB+CR++6VQJTxcHA8OKiEhmpoIqIg8v+jrM6woXtoHJDhqPhBqvcCMmkX5ztrPttO1801fqF+XtxiUx2+l8UxERuTcVVBF5OJf3QkhXiLwITp7QbioUa8i+C+G8Ons3VyLicXM080W7YJqW9zc6rYiIZAEqqCLy4A7Mh19fh+R4yFMMOoVA3uKE7DjP8CV/kphiIcjHjUnddL6piIjcPxVUEUm/lGRYMwK2fmdbLv4MtJ5MgoM7Hyw6wNwdFwB4pkw+xrYPxt1Z55uKiMj9U0EVkfSJvWWbQur0Otty3UHw5DtciUrklanb2H8hHJMJBj1TklfrF8VO55uKiEg6qaCKyP27ehhCOsHts+DgCi1/gLIt2XrqJv3m7OFmTCKeLg5806kS9Uv4GJ1WRESyKBVUEbk/h3+FX16BpBjwKgwd52DNV5YpG08zavlRUixWyvh7MLFbFQK8XY1OKyIiWZgKqoj8O4sFQkfChjG25cD60G46sfYeDAnZx2/7LwPQqlIBRrYqj4uj2cCwIiKSHaigisi9xUfCopfg+HLb8hN9odFHnL2dwMuztnDsahT2dibee640PWoVwWTS+aYiIvLwVFBF5O5unICQznDjOJidoNnXULETqw9fZeD8fUTFJ5M3lxPju1SmeqC30WlFRCQbUUEVkTsdXwULe0NCJHgUgA6zSfaryBfLjzJh/SkAKhfy4oeuVcjn4WxwWBERyW5UUEXk/1mtsOlLWPsxYIWAJ6DDLK5ZPeg/5f9vWfpC7SIMa1oaR3s7Y/OKiEi2pIIqIjbxkbD4VTi61LZc5QVoOpodF6LpN2cT16IScHM083nbCjxfIb+xWUVEJFtTQRURuH4MQrrAzRNgdoSmo7FW6cmPG8/w2QrbFFLFfXPxQ9cqFPPNZXRaERHJ5lRQRXK6w7/a9pwmRoN7fugwi8i8wQyevYcVf4YB0KJifka2Ko+bk35kiIjI46ffNiI5lSUF/vgYNn1lWy5cB9pN50iUE69+u4mzN2NxMJsY3qwsXWsU0hRSIiKSYVRQRXKimJuwsBecDrUt1+wHDT9kwb4w3lu8i/gkCwW8XPi+S2UqBngZmVRERHIgFVSRnObyXpjXDSIugIMrtPiO+JIt+XDJn8zdcQGA+iV8GNehIrndHA0OKyIiOZEKqkhOsvcnWPompCSAdxB0+IkLDkV4dcIWDl2KxGSCAU+X4PWnimFnp0P6IiJiDBVUkZwgORFWDIVdU2zLJZpAq4msOZPAwPkbiYxPJrerA193rES9Ej7GZhURkRxPBVUku4u8DPN7wMUdgAkaDCOpzluMXnmcyRvPAFAxwIvvu1SmgJeLsVlFRERQQRXJ3s5uhp97Qsw1cPaE1j9y0acOr0/azt7z4QD0rhPIkCaldFcoERHJNFRQRbIjqxW2fg+rh4M1BXzLQsfZrAlz461vNhERl4SHsz1j2gXTuKyf0WlFRETSUEEVyW7iI2BJXzjym225fDuSnv2KMesuMmnDEQCCC3ryXefKBHi7GhhURETk7lRQRbKTsEMwvxvcOg12DtBkFJeKd+H1aXvZ879D+r1qBzK0qQ7pi4hI5qWCKpJd7JsDSwdCchx4BkC7GayNKshb324iPDYJd2d7xrQNpkk5HdIXEZHMTQVVJKtLioflg2HPDNtysYYktZjIFxuvM3HDLgAqFPTkex3SFxGRLEIFVSQru30W5neHK/sBEzz5Dpcr9KXfrH2ph/RfqF2EoU1L4WRvNjKpiIjIfVNBFcmqji2HX162XRTlmgfa/Mi6pHK8+e3mvx3Sr0CTcv5GJxUREUkXFVSRrCYlGdZ9Apu+si0XrEZiq6mM3R7DxA07AShfwHZIv1AeHdIXEZGsRwVVJCuJvgYLesHZjbblGq9yvspQXp97iP0XIwDoUbMw7zxXWof0RUQky1JBFckqzm2Bn1+A6DBwzAXNv+XXlCd45/vtRCck4+niwOdtKugqfRERyfJUUEUyO6sVtn4Hq0fY7grlU5q4VlMZsSWJ+bv2AlCtSG7GdaxEAS8Xg8OKiIg8PBVUkcwsPgIWvwZHl9qWy7fnaLWP6Tv3KKeux2AywetPFaf/U8WwN2vifRERyR5UUEUyq8t74eeetqmkzI5Ym3zGrKSn+GTSXhKTLeTzcOKrDhWpVTSv0UlFREQeKRVUkczGaoUdk2HVu5CSCJ6FiGr+I29tNrPq8GEAni7ly5h2wXi7ORocVkRE5NFTQRXJTOLC4dd+cOQ323Kp59lT6RP6zT/N5Yh4HM12DG1aihdqF8FkMhkaVURE5HFRQRXJLC7ttl2lH34O7BywNPqY72KeZtz0w1isEJjXjW87VaJcAU+jk4qIiDxWKqgiRrNaYfsEWPU+WJLAqzA3mk6k33rYdvoEAK0rF+CjFuXI5aRvWRERyf70207ESHG3YUm//79Kv3Qz1pcawYB5Z7gdm4Sro5lPWpajdeWCxuYUERHJQCqoIka5uNt2lX7EeTA7kvT0x4y8UYdpc48DUK6AB992qkxgXjdjc4qIiGQwFVSRjGa1wrbxsHo4WJIhdxHOPT2el9ekcDTsHAC9agcypGlJ3a5URERyJBVUkYwUewuW9IVjvwNgLdOSufkG8WHIRRKSLeRxc2RMuwo8VSqfwUFFRESMo4IqklEu7IQFL0DEBTA7Et3gI14/UZl1e84D0KCkD2PaBuPj7mRwUBEREWOpoIo8bhYLbP0O1n5oO6TvHcTOal/y6tpkbkTfwNHejnealqJHLc1tKiIiAiqoIo9XzE1Y8hocXwFASplWjHZ4jYlLrgNQMp8733SqREk/dyNTioiIZCoqqCKPy5kNsOgliLoCZifCao2gx/5yHLtmK6c9axVhaNNSODvoQigREZG/U0EVedRSkiD0M9g4FrBizVuCJUU/ZvA6K4nJ0eTN5cSYdhV4sqSv0UlFREQyJRVUkUfp9jlY+CJc3AFAXPkuvH67A2vWRwPwVClfRretQN5cuhBKRETkXlRQRR6VP3+BX9+AhAhw8uRg5Q/psaMgt2KicbK3473nStP1icK6EEpEROQ/qKCKPKzEGFgxFPbMBMBSoCpfeQzl23WJQCKl/GwXQpXIpwuhRERE7ocKqsjDCDsIC3rBjeOAiesV+9L11FMcOxUPQO86gQxuojtCiYiIpIddel+wYcMGmjVrRv78+TGZTCxevPhft1+0aBGNGjXCx8cHDw8PatasycqVK9Ns88EHH2AymdI8SpUqld5oIhnHaoXtk2Dy03DjONZcfiwJHk+tnbU5dj0eH3cnZvaqzvvPl1E5FRERSad0F9SYmBiCg4P5/vvv72v7DRs20KhRI37//Xd2797Nk08+SbNmzdi7d2+a7cqWLcuVK1dSH5s2bUpvNJGMEXMT5naC5W9DSgJxRRrRy2Ucb2z3JCnFyjNl8rHijbrUK+FjdFIREZEsKd2H+Js2bUrTpk3ve/tx48alWR45ciRLlizht99+o1KlSv8fxN4ePz+/9MYRyVh/m9vUanZkb8mBdDtUkZhEC7mc7BnRrAxtqxTUhVAiIiIPIcPPQbVYLERFReHt7Z3m+RMnTpA/f36cnZ2pWbMmo0aNolChQnd9j4SEBBISElKXIyMjH2tmEVKSYf1nsOELwEqydzE+dX6baXvcAQvVi3gztn0wAd6uRicVERHJ8jK8oH7xxRdER0fTvn371Odq1KjB9OnTKVmyJFeuXOHDDz+kbt26HDp0CHf3O698HjVqFB9++GFGxpac7PY5WNQHLmwH4FJgW9qfa8mlWDsczCbeeqYkfeoGYbbTXlMREZFHwWS1Wq0P/GKTiV9++YWWLVve1/Zz5syhT58+LFmyhIYNG95zu/DwcAoXLsyXX35J796971h/tz2oAQEBRERE4OHhke7PIXJPB+bDsrcgIRKrkztzfQbyzsmSAJTM585XHSpSJr/+zYmIiPyXyMhIPD0976uvZdge1JCQEF588UV+/vnnfy2nAF5eXpQoUYKTJ0/edb2TkxNOTroTjzxGceG2YnpoAQDRPpXpFdWHHSc9MZmgT90gBjYqgbODrtAXERF51DKkoM6dO5devXoREhLCc88995/bR0dHc+rUKbp165YB6UT+4exm+OVliLiA1WRmc4FevHCqHklWMwW8XBjbPpgngvIYnVJERCTbSndBjY6OTrNn88yZM+zbtw9vb28KFSrEsGHDuHTpEjNn2u6qM2fOHHr06MHXX39NjRo1CAsLA8DFxQVPT08ABg0aRLNmzShcuDCXL19mxIgRmM1mOnXq9Cg+o8j9SU6E0FGw6SvASqJHYYZYX+eXk/kBaFO5ICOal8HD2cHYnCIiItlcugvqrl27ePLJJ1OXBw4cCECPHj2YPn06V65c4fz586nrJ02aRHJyMn379qVv376pz/+1PcDFixfp1KkTN2/exMfHhzp16rBt2zZ8fDSPpGSQGydg4YtwZR8Ax/xb0PFCS24nO5Hb1YGRrcrTtLy/sRlFRERyiIe6SCqzSM9JtyJpWK2wexqsfBeSYrE4efGNWz/GXS4DQIOSPoxuUwFfD2eDg4qIiGRtmfIiKZFMJ+YG/Po6HPsdgKt5atD5Rk9ORXji4mDm3edK06VGIU26LyIiksFUUCVnOrEGlrwG0Vexmh2Z59GTYZfqYcWOKoVz80W7YALzuhmdUkREJEdSQZWcJSkOVo+AHRMBiHIPonfUK+y4UhBHezsGPVOC3nU06b6IiIiRVFAl5wg7CAv7wPUjAKzzbMkrV1uSgCPlC3jyZftgiue7885lIiIikrFUUCX7s1hg23hY+yGkJJLglIe3k17m16vlsLczMfDp4rzaoCgOZjujk4qIiAgqqJLdhZ+Hxa/B2Y0AHHKrSY+b3bmJJyXzuTO2fTDlCngaHFJERET+TgVVsierFfbNgeVDIDGKFLMLY+jGhJv/1969x0Vd53scfw8jM6AB3pKLjCIo6ApqarJo5lq0HC1Tq9W2luhi1mYXZcs0Uzq6GbluW4+iemQX211PdtmsVllcL3lMV4+l0Np62aNQ2iqkpULIZS7f84fJWZNMSGZ+g6/n48Ef/PyOvOfxYZy335nfb0YoxGbTXSOSdF9mLznb8FGlAABYDQUVrc/Xh6TlU6VdyyVJn7VN1U1HbtVnJkaJndtp4YT+GtitQ2AzAgCA70RBReuya4X03r3S8cPyhYTqhZCJ+s1XWfLKrluH9dADWSkKd7BrCgCAlVFQ0TrUVkpFM6WSP0qSKsISdcuxSdphEuTqGK7fXNdfP07sFOCQAADgbFBQEfzKPjhxItSxfTKy6bXQcXrk6DjVK1Q3pHfTQ6P76AInv+oAAAQLnrURvNy10pq50uYCSdJXjjjdUTVJH9b2VmxUmPKv7acRyRcGOCQAAGgqCiqC04ESadkd0qFdkqT37FdoZuX1qla4fj7EpZmj+ygyLDSwGQEAQLNQUBFcvB5pw++k/86XfB5Vtemo+47fqrW+geraPlzPX5um4b3YNQUAIJhRUBE8Du85sWv6r48kSe+HZCj36xwdUaRuTO+mmbzXFACAVoFnc1ifzyd9uEhalSd5alQTcoFm1t6kd3zDFN+hrQqu7aehPTsHOiUAADhHKKiwtq/KpHfvlj7bIEn60NZP9x6/XQfVSTkZ3TX9P3qrHbumAAC0Kjyzw5p8Pumjl07smrqrVRcSrnl112uJ93K5Ol6gpdf147qmAAC0UhRUWM+Rz6R3p0iffiBJ2mrrq6k1k/S5onXzsAQ9kJWitg5+dQEAaK14lod1GCN99LK0ao5U/7XqbGF6tH6i/uC9QgmdI/TGdf10cULHQKcEAAAtjIIKazi6T3rvHql0nSRpm62PptZO1n5Fa9LwHsq9IkXhDntgMwIAAL+goCKwjJG2vSqtfFiqr1K9zanH6idosTdLPS6M0FvX9deg7h0CnRIAAPgRBRWBc+zzE7ume9dKkorVW9Nqb9c+xWryiERNy0xWWCi7pgAAnG8oqPA/Y6TiP0grZ0l1laq3OfR4/c/0ineUekVH6U/XpumibuyaAgBwvqKgwr+O/Uv6873SntWSpBLTS7l1d2h/SFfdl9lLv/xJkhxtQgIcEgAABBIFFf5hjFTyX1LRTKnumOoVqt+4f6aXvKPVv1tHPX9tPyVHRwQ6JQAAsAAKKlre0X3Sn6dKe9dIkj42Scqtv1MH2nTTw6NSlDM0QfYQW2AzAgAAy6CgouWc/DSo1Y9I9V+rXqF6wn2tFnmv1NBe0Vo8Pk2ujm0DnRIAAFgMBRUt4/Ae6b27pX2bJEkf+lI03T1ZXzpdyh//I103KF42G7umAADgdBRUnFtej7TpGen9+ZK3TjUK03z39fqjN1Oj0uL0yNV91SUiLNApAQCAhVFQce6UfyK9O0U6WCJJWu9N00z3JNVHxOu5san6j9SYwOYDAABBgYKKH85TJ61fKG14QvJ5VKl2muv+hd7yXqqJg7vpodF9FNU2NNApAQBAkKCg4of5/CPp3bulQzslSUXeizXbfbPCO3bVkmvSNKxn5wAHBAAAwYaCiuapPy69/6jM5mdlMz59qSjNrs9RkUnXrZckKvenyWrr4NcLAAA0HQ0CTVf2gfTePdKRMtkk/cl7iea5sxUdHae3r+unAa72gU4IAACCGAUVZ6+2Ulo1R9r6iiTpoOmome7b9LeQQbovq5cmX5qoUDsfUwoAAH4YCirOzs7lUuH9UtVBSdIfPZcr3/Nz9UtyaeX4NPXo3C7AAQEAQGtBQcWZVR6QCh+Qdi2XJH3qi9YMz+3aFdZfeeP6cMF9AABwzlFQ0TifT9r6srT6P6W6Snlk13OeMXrGM06jBiTomat+pM4XOAOdEgAAtEIUVJzui53Sn++T9v+PJKnY11Mz3JNU3T5FL4xP04jkCwMcEAAAtGYUVPw/d630wW9lNvxONp9b1QrT4+6Jes38VLcOT9J9mb24dBQAAGhxtA2c8OkG6c9TpS//VzZJq7yDNMd9szp3TdSya9KU2jUq0AkBAMB5goJ6vqs5cuLSUdt+L0n6wrTXHPfN+m/7j/WrK1N089AEteHSUQAAwI8oqOcrY6R/LJP+8qBU/YUkaYnncj3uuV4DUxK0alyq4ju0DXBIAABwPqKgno+O7pdW/Er635WSpD2+OM1wT9Kn7frp0TF9dVW/WC4dBQAAAoaCej7xeqQPF8msmSebu1putdEz7rF6znu1rrk4US+O6q32bR2BTgkAAM5zFNTzxedbpeVTpfK/yyZpiy9FM92TZDol69XxacpI6hTohAAAAJIoqK1fzVFp7TyZD1+STUbHTDvle67X27pcd1zWS3f9JElhofZApwQAAGhAQW2tjJE++ZNUNFOq/kI2SX/yXqL57hvVK7GHCsenKenCCwKdEgAA4DQU1Nboy73SilypdJ0kaa8vVg97btXu8Iv08Pg+Gn9RV06CAgAAlkVBbU3ctdLGJ2U+eEI2b53qFKqn3eP0gvcqXXNxop7jJCgAABAEKKitxd73T1w66qu9skla703TbM8tCuvSS/81PlWDEzoGOiEAAMBZoaAGu6oK6a+zpO1vSpIqTHvNdd+kNfYM3ZeVoknDeyiUT4ICAABBhIIarHxeaesr0uq5Ut0xeRWi33uu0BOen2lwSnetGpsqV0c+CQoAAAQfCmowOvixtHya9K+tkqS/+3polvs2fRHRR4+P6atRqTGcBAUAAIIWBTWY1ByV3p8v8+Ei2YxPVQrXAvdEvebL1C8yEvWrnyYrIiw00CkBAAB+EApqMPD5pL8vlVbNkaoPySZpuffHmuvOVnTXBC0bn6a0+KhApwQAADgnKKhWV75dWnG/tH+zJGmPiVOeO0cfh16k+8ckKzsjQfYQXs4HAACtBwXVqmqOSusek7a8IBmfjitMT7nH62XvKF2RFq/VV/VVTFRYoFMCAACccxRUqzFG+niptGq2VH1IkrTcm65H3b+QvUO8XhibqpG9uwQ4JAAAQMuhoFpJ+Xap8AFp3yZJUqmJ02x3jv5H/XT7TxJ172W9FO6wBzgkAABAy6KgWsG3Xs6vkVNPucfrJe9oXdSjiwrHpSo5OiLQKQEAAPyCghpIZ3g5331BrB4f3UfjL+rKNU0BAMB5hYIaKOWfSIX3N7ycX/bNy/kbTZp+8ePuuv+nKYpqyzVNAQDA+YeC6m81R6R1+dKWRZLxqlZOPfnNy/l94jvp3XGp6hffPtApAQAAAoaC6i8+r7Tt99LaedLxLyVJhd4hmufOVnVYtPLG9NbPh3TjmqYAAOC8R0H1h32bT5ydX/53SdJexWtOfbY2+tJ07cB4zRzdW50vcAY4JAAAgDVQUFtS5YETH0+6/U1JUrWtnRbWX6M/eK9QYnR7vT42VemJnQIcEgAAwFooqC3BXSttekb64AnJXS0jm173jtQC9wTVOjpoelYv3TKsh0LtIYFOCgAAYDkU1HPJGGn3X6SVM6Ujn0qSPralaFZttj4xiRqVGqPZV/1Ice3DA5sTAADAwiio58qh3VLRDGnvWknSV/ZO+s+aiXrXN0zdO7XTK1f31cgUPqIUAADg+zT5Neb169drzJgxiouLk81m0zvvvPO9t1m3bp0GDhwop9Opnj17avHixaetKSgoUEJCgsLCwpSenq4tW7Y0NVpg1B6Tih6Snhsq7V0rjy1Uz3vH6pLq3+gvIZfqvsuTtXLqpZRTAACAs9TkglpdXa3+/furoKDgrNaXlZXpyiuv1MiRI1VSUqKpU6dq0qRJWrlyZcOa119/Xbm5ucrLy9O2bdvUv39/ZWVl6YsvvmhqPP/x+aRtf5CeHiRtLpB8Hm2wD9FltQuU756owckurZx6qaZdkaywUHug0wIAAAQNmzHGNPvGNpuWLVumcePGfeeaBx98UCtWrNAnn3zScOz666/X0aNHVVRUJElKT0/XxRdfrGeeeUaS5PP55HK5dM8992jGjBmn/Z11dXWqq6tr+L6yslIul0vHjh1TZGRkc+/O2dv/ofSXB6QDxZKk8lCXplffoPW+/oqJDNOcMT/SqNQYPqIUAADgG5WVlYqKijqrvtbip5Fv2rRJmZmZpxzLysrSpk0nPuKzvr5eW7duPWVNSEiIMjMzG9Z822OPPaaoqKiGL5fL1XJ3oDH7N0sHilVnv0D5vmwNr3pUGzVAky9N1OpfjdDotFjKKQAAQDO1+ElS5eXlio6OPuVYdHS0KisrVVNToyNHjsjr9Ta6ZteuXY3+nTNnzlRubm7D9yd3UP1ly4XXaa+jRL+tvFyHFaWLEzpo3rhU9Y7xw+4tAABAKxeUZ/E7nU45nYH75KVPKmo1t/IadWrn0MLRfXTtwK7smAIAAJwjLV5QY2JiVFFRccqxiooKRUZGKjw8XHa7XXa7vdE1MTExLR2vWW7K6K6v6zy6KaO72rd1BDoOAABAq9Li70HNyMjQmjVrTjm2atUqZWRkSJIcDocGDRp0yhqfz6c1a9Y0rLGaNvYQ3Xt5L8opAABAC2hyQf36669VUlKikpISSScuI1VSUqJ9+/ZJOvH+0Jtuuqlh/Z133qnS0lJNnz5du3bt0rPPPqs33nhD06ZNa1iTm5urRYsW6dVXX9XOnTv1y1/+UtXV1brlllt+4N0DAABAsGnyS/wfffSRRo4c2fD9yZOVcnJytHjxYh08eLChrEpSjx49tGLFCk2bNk1PPfWU4uPj9eKLLyorK6thzcSJE3Xo0CHNmTNH5eXlGjBggIqKik47cQoAAACt3w+6DqpVNOW6WgAAAPA/S10HFQAAAGgKCioAAAAshYIKAAAAS6GgAgAAwFIoqAAAALAUCioAAAAshYIKAAAAS6GgAgAAwFIoqAAAALAUCioAAAAshYIKAAAAS6GgAgAAwFIoqAAAALAUCioAAAAshYIKAAAAS6GgAgAAwFIoqAAAALAUCioAAAAshYIKAAAAS6GgAgAAwFIoqAAAALCUNoEOcC4YYyRJlZWVAU4CAACAxpzsaSd725m0ioJaVVUlSXK5XAFOAgAAgDOpqqpSVFTUGdfYzNnUWIvz+Xw6cOCAIiIiZLPZ/PIzKysr5XK5tH//fkVGRvrlZ+LcYX7BjxkGP2YY/JhhcPP3/IwxqqqqUlxcnEJCzvwu01axgxoSEqL4+PiA/OzIyEgelEGM+QU/Zhj8mGHwY4bBzZ/z+76d05M4SQoAAACWQkEFAACApVBQm8npdCovL09OpzPQUdAMzC/4McPgxwyDHzMMblaeX6s4SQoAAACtBzuoAAAAsBQKKgAAACyFggoAAABLoaACAADAUiioAAAAsBQK6hkUFBQoISFBYWFhSk9P15YtW864/s0331Tv3r0VFhamtLQ0FRYW+ikpGtOU+S1atEjDhw9Xhw4d1KFDB2VmZn7vvNHymvoYPGnp0qWy2WwaN25cywbE92rqDI8ePaopU6YoNjZWTqdTycnJ/FsaQE2d35NPPqmUlBSFh4fL5XJp2rRpqq2t9VNafNv69es1ZswYxcXFyWaz6Z133vne26xbt04DBw6U0+lUz549tXjx4hbP2SiDRi1dutQ4HA7z8ssvm3/84x/m9ttvN+3btzcVFRWNrt+4caOx2+1mwYIFZseOHebhhx82oaGhZvv27X5ODmOaPr8bbrjBFBQUmOLiYrNz505z8803m6ioKPP555/7OTlOauoMTyorKzNdu3Y1w4cPN2PHjvVPWDSqqTOsq6szgwcPNqNHjzYbNmwwZWVlZt26daakpMTPyWFM0+e3ZMkS43Q6zZIlS0xZWZlZuXKliY2NNdOmTfNzcpxUWFhoZs2aZd5++20jySxbtuyM60tLS03btm1Nbm6u2bFjh3n66aeN3W43RUVF/gn8byio32HIkCFmypQpDd97vV4TFxdnHnvssUbXT5gwwVx55ZWnHEtPTzd33HFHi+ZE45o6v2/zeDwmIiLCvPrqqy0VEd+jOTP0eDxm6NCh5sUXXzQ5OTkU1ABr6gyfe+45k5iYaOrr6/0VEWfQ1PlNmTLFXHbZZaccy83NNcOGDWvRnDg7Z1NQp0+fbvr27XvKsYkTJ5qsrKwWTNY4XuJvRH19vbZu3arMzMyGYyEhIcrMzNSmTZsavc2mTZtOWS9JWVlZ37keLac58/u248ePy+12q2PHji0VE2fQ3BnOnTtXXbp00W233eaPmDiD5szwvffeU0ZGhqZMmaLo6GilpqZq/vz58nq9/oqNbzRnfkOHDtXWrVsb3gZQWlqqwsJCjR492i+Z8cNZqcu08ftPDAKHDx+W1+tVdHT0Kcejo6O1a9euRm9TXl7e6Pry8vIWy4nGNWd+3/bggw8qLi7utAcq/KM5M9ywYYNeeukllZSU+CEhvk9zZlhaWqq1a9fqxhtvVGFhofbs2aO77rpLbrdbeXl5/oiNbzRnfjfccIMOHz6sSy65RMYYeTwe3XnnnXrooYf8ERnnwHd1mcrKStXU1Cg8PNxvWdhBBb4lPz9fS5cu1bJlyxQWFhboODgLVVVVys7O1qJFi9S5c+dAx0Ez+Xw+denSRS+88IIGDRqkiRMnatasWXr++ecDHQ1nYd26dZo/f76effZZbdu2TW+//bZWrFihefPmBToaghA7qI3o3Lmz7Ha7KioqTjleUVGhmJiYRm8TExPTpPVoOc2Z30kLFy5Ufn6+Vq9erX79+rVkTJxBU2e4d+9effrppxozZkzDMZ/PJ0lq06aNdu/eraSkpJYNjVM053EYGxur0NBQ2e32hmN9+vRReXm56uvr5XA4WjQz/l9z5jd79mxlZ2dr0qRJkqS0tDRVV1dr8uTJmjVrlkJC2BOzuu/qMpGRkX7dPZXYQW2Uw+HQoEGDtGbNmoZjPp9Pa9asUUZGRqO3ycjIOGW9JK1ateo716PlNGd+krRgwQLNmzdPRUVFGjx4sD+i4js0dYa9e/fW9u3bVVJS0vB19dVXa+TIkSopKZHL5fJnfKh5j8Nhw4Zpz549Df+5kKR//vOfio2NpZz6WXPmd/z48dNK6Mn/bBhjWi4szhlLdRm/n5YVJJYuXWqcTqdZvHix2bFjh5k8ebJp3769KS8vN8YYk52dbWbMmNGwfuPGjaZNmzZm4cKFZufOnSYvL4/LTAVQU+eXn59vHA6Heeutt8zBgwcbvqqqqgJ1F857TZ3ht3EWf+A1dYb79u0zERER5u677za7d+82y5cvN126dDG//vWvA3UXzmtNnV9eXp6JiIgwr732miktLTV//etfTVJSkpkwYUKg7sJ5r6qqyhQXF5vi4mIjyTzxxBOmuLjYfPbZZ8YYY2bMmGGys7Mb1p+8zNQDDzxgdu7caQoKCrjMlBU9/fTTplu3bsbhcJghQ4aYzZs3N/zZiBEjTE5Ozinr33jjDZOcnGwcDofp27evWbFihZ8T4981ZX7du3c3kk77ysvL839wNGjqY/DfUVCtoakz/Nvf/mbS09ON0+k0iYmJ5tFHHzUej8fPqXFSU+bndrvNI488YpKSkkxYWJhxuVzmrrvuMkeOHPF/cBhjjHn//fcbfW47ObecnBwzYsSI024zYMAA43A4TGJionnllVf8ntsYY2zGsO8OAAAA6+A9qAAAALAUCioAAAAshYIKAAAAS6GgAgAAwFIoqAAAALAUCioAAAAshYIKAAAAS6GgAgAAwFIoqAAAALAUCioAAAAshYIKAAAAS/k/8amWsFRSgwQAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 800x800 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"pts = pinn.problem.spatial_domain.sample(256, 'grid', variables='x')\n",
|
|
"predicted_output = pinn.forward(pts).extract('u').as_subclass(torch.Tensor).cpu().detach()\n",
|
|
"true_output = pinn.problem.truth_solution(pts).cpu().detach()\n",
|
|
"pts = pts.cpu()\n",
|
|
"fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 8))\n",
|
|
"ax.plot(pts.extract(['x']), predicted_output, label='Neural Network solution')\n",
|
|
"ax.plot(pts.extract(['x']), true_output, label='True solution')\n",
|
|
"plt.legend()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "bf47b98a",
|
|
"metadata": {},
|
|
"source": [
|
|
"The solution is overlapped with the actual one, and they are barely indistinguishable. We can also plot easily the loss:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "bf6211e6",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARVRJREFUeJzt3Xd4lfX9//HXyU7IIgQSsgiQhE3CSgygiAQRUFwVRVTUurEgWFf9tfZbW7G1oiIR1Kpoq4ITq6jIXjLDniGshEASZiZknHP//ggEUxEZJ7nPeD6uK9cl5xyT98dSzpP73Pf9sRiGYQgAAMANeZg9AAAAgFkIIQAA4LYIIQAA4LYIIQAA4LYIIQAA4LYIIQAA4LYIIQAA4La8zB7AkdlsNh04cEBBQUGyWCxmjwMAAM6DYRgqLS1VVFSUPDzOfcyHEDqHAwcOKDY21uwxAADARcjLy1NMTMw5X0MInUNQUJCk2v+QwcHBJk8DAADOR0lJiWJjY+vex8+FEDqH0x+HBQcHE0IAADiZ8zmthZOlAQCA2yKEAACA2yKEAACA2yKEAACA2yKEAACA2yKEAACA2yKEAACA2yKEAACA2yKEAACA2yKEAACA2yKEAACA2yKEAACA2yKETFJUelIb8o6bPQYAAG6NEDLB9oISDXltie77YI0OlVaaPQ4AAG6LEDJBq7AmCmvio0OllXr6841mjwMAgNsihEzg7+Opybd3lyTN216kY+VVJk8EAIB7IoRMkhQRpDbNm0iS1uw7ZvI0AAC4J0LIRKnxYZKk1XuPmjwJAADuiRAyUa9TIbRqDyEEAIAZCCETpbauDaHN+cU6UWU1eRoAANyPy4fQN998o3bt2ikxMVH/+te/zB6nnpim/ooM9lONzdC6PM4TAgCgsbl0CNXU1Gj8+PGaP3++1q1bp5deeklHjhwxe6w6FotFvU4dFVq9hxACAKCxuXQIrVq1Sp06dVJ0dLQCAwM1ePBg/fDDD2aPVU9qfFNJnDANAIAZHDqEFi9erOuuu05RUVGyWCyaOXPmz16TmZmp+Ph4+fn5KS0tTatWrap77sCBA4qOjq77dXR0tPLz8xtj9PN2+ojQ2txjqrHaTJ4GAAD34tAhVF5eruTkZGVmZp71+RkzZmj8+PF67rnntHbtWiUnJ2vQoEEqKiq6qJ9XWVmpkpKSel8NLalFkEL8vVVRZdWWAw3/8wAAwBkOHUKDBw/WX//6V914441nfX7ixIm6//77dc8996hjx46aOnWqAgIC9O6770qSoqKi6h0Bys/PV1RU1C/+vAkTJigkJKTuKzY21r4LOgsPD4t6tuLjMQAAzODQIXQuVVVVysrKUkZGRt1jHh4eysjI0PLlyyVJqamp2rx5s/Lz81VWVqbvvvtOgwYN+sXv+cwzz6i4uLjuKy8vr8HXIZ35eIz7CQEA0Li8zB7gYh0+fFhWq1URERH1Ho+IiND27dslSV5eXnr55ZfVv39/2Ww2Pfnkk2rWrNkvfk9fX1/5+vo26Nxnc/rGimv2HZNhGLJYLI0+AwAA7shpQ+h8DRs2TMOGDTN7jHPqEh0iP28PHS2v0q5DZUpoEWT2SAAAuAWn/WgsPDxcnp6eKiwsrPd4YWGhIiMjTZrq4vh4eSglNlSStIr7CQEA0GicNoR8fHzUo0cPzZs3r+4xm82mefPmKT09/ZK+d2Zmpjp27KhevXpd6pjnrRcbsAIA0Ogc+qOxsrIy5eTk1P16z549Wr9+vcLCwhQXF6fx48dr1KhR6tmzp1JTU/Xqq6+qvLxc99xzzyX93NGjR2v06NEqKSlRSEjIpS7jvKRywjQAAI3OoUNozZo16t+/f92vx48fL0kaNWqUpk2bpltvvVWHDh3Sn/70JxUUFCglJUXff//9z06gdgbd45rK08Oi/OMndOD4CUWF+ps9EgAALs9iGIZh9hCO6vQRoeLiYgUHBzf4zxs2eak27i/Wa7el6PqU6F//FwAAwM9cyPu3054j5IpOnyfEx2MAADQOQsiBcMI0AACNixA6CzOuGpOkXqd2os8uLNOx8qpG/dkAALgjQugsRo8era1bt2r16tWN+nObBfqqbfMmkjgqBABAYyCEHMzpy+gJIQAAGh4h5GDq7ie0lztMAwDQ0AghB3P6hOkt+cWqqKoxeRoAAFwbIeRgYpoGKCrETzU2Q+tyj5s9DgAALo0QckC92G4DAIBGQQidhVmXz5/G/YQAAGgchNBZmHX5/GmnT5hel3tc1VabKTMAAOAOCCEHlNA8UKEB3jpRbdXm/GKzxwEAwGURQg7Iw8Oinq34eAwAgIZGCDmo1Na1221wwjQAAA2HEHJQl7VpJklaufuoajhPCACABkEIOahOUSEK8fdWaWWNNnKeEAAADYIQclCeHhb1blt7VGjZzsMmTwMAgGsihM7C7PsIndYnIVyStDSHEAIAoCEQQmdh9n2ETut7KoTW5h5j3zEAABoAIeTAWjULUHSov6qtBlePAQDQAAghB2axWHR5Yu1RoWV8PAYAgN0RQg7u9HlCSzhhGgAAuyOEHFzfhHB5WKTtBaXaf6zC7HEAAHAphJCDa9rEp267jXnbikyeBgAA10IIOYGBHSMkSXO3FZo8CQAAroUQcgIZp0Joxe4jKjlZbfI0AAC4DkLoLBzlhoqntQ5vorbNm6jaamjRjkNmjwMAgMsghM7CUW6o+FOnjwrN3lJg8iQAALgOQshJDOncUlLteUJlldxlGgAAeyCEnETXmBC1Dm+ik9U2/cBRIQAA7IIQchIWi0U3pERLkr5cl2/yNAAAuAZCyIlcnxIlqXa7jcKSkyZPAwCA8yOEnEh8eBP1bNVUNkP6eFWu2eMAAOD0CCEnc1fveEnShytzVVVjM3cYAACcHCHkZAZ3jlSLIF8dKq3Ud5sPmj0OAABOjRByMt6eHhqZ1kqS9Oai3bLZDJMnAgDAeRFCTuiu9FYK9PXS1oMl+p5L6QEAuGiE0Fk42hYb/6tpEx/d27e1JGninGxZOSoEAMBFIYTOwhG32Phf913eWiH+3sopKtMHy/eaPQ4AAE6JEHJSwX7eemJQO0nSP2fv0IHjJ0yeCAAA50MIObHbU+PUo1VTlVdZ9dTnGzlxGgCAC0QIOTEPD4v+fnMX+Xl7aMnOw5q8IMfskQAAcCqEkJNLaBGkv93QRZL0ytxsfbuJewsBAHC+CCEXcHOPGN15WSsZhvTY9PVauvOw2SMBAOAUCCEX8edhnTSkS6SqrDbd98FqLdhRZPZIAAA4PELIRXh6WPTKrSm6sl1znay26f731+jLdfvNHgsAAIdGCLkQXy9PvX1XT92QEqUam6FxMzZowrfbVGNlc1YAAM6GEHIx3p4emjg8RQ/2ayNJenPxbt35zioVlZ40eTIAABwPIeSCPDwsemZwB70xsrua+Hhq+e4jGvTKYn2z8YDZowEA4FAIIRc2pEtLffVoH3WKCtaximo9+tE6jf5wrQpLODoEAIBECLm8hBZB+vKRPhozIFGeHhbN2nRQV/1zoaYu2qWqGs4dAgC4N0LoLBx99/kL5ePlofEDk/TV6D5KiQ1VeZVVL363XYNeXayvNxxgaw4AgNuyGIbBu+AvKCkpUUhIiIqLixUcHGz2OHZhsxn6Yl2+Xvxuuw6XVUqS2kcGafzAJA3sGCGLxWLyhAAAXJoLef8mhM7BFUPotNKT1Xpv2V69vXi3SitrJEmdooL1UL+2Gtw5Ul6eHCwEADgnQshOXDmETjteUaW3l+zWe8v2qqLKKkmKCwvQ/Ve00S09YuTn7WnyhAAAXBhCyE7cIYROO1ZepfeX79X7P+7VsYpqSVJ4oI/u7h2vOy5rpdAAH5MnBADg/BBCduJOIXRaRVWNPlmdp7eX7FH+8ROSJD9vD93UPUb39I5XYkSQyRMCAHBuhJCduGMInVZttembjQf01uI92nawpO7xyxPDdW+f1uqX1FweHpxYDQBwPISQnbhzCJ1mGIZW7jmq95bt0ZythTp9pX2b8Ca6u0+8bu4eoya+XuYOCQDATxBCdkII1Zd3tELv/7hXM1bn1V1pFuTnpZu7x+j2tDgl8bEZAMABEEJ2QgidXVlljT7P2q9pP+7VnsPldY+nxofp9rQ4XdM5kqvNAACmIYTshBA6N5vN0NKcw/pw5T7N3VYk66nPzZoGeOuWnrEakRqn1uFNTJ4SAOBuCCE7IYTOX2HJSc1YnaePV+XqYPGZTV37JDTT7amtNLBjhHy8uEkjAKDhEUJ2QghduBqrTQt3HNKHK/dpYfYhnf7d1ayJj37TM0YjesUpnqNEAIAGRAjZCSF0afKOVmjG6jx9siZPRaWVdY/3bttMI1LjdHWnCPl6cS4RAMC+CCE7IYTso9pq0/ztRZq+KrfeUaKwJj76TY8Y3dYrVm2aB5o7JADAZRBCdkII2d/+YxX6ZM1+fbI6TwUlZ84lSmtde8XZoE5ccQYAuDSEkJ0QQg3n9LlEH6/K1YIdRXU3agwN8NbN3WM0IjVWCS24LxEA4MIRQnZCCDWOA8dP6JM1eZqxOq/eFWep8WEakRarwZ1bcpQIAHDeCCE7IYQal9VmaHH2IX20Klfzt5+5L1Gwn5du4u7VAIDzRAjZCSFknoLik/p0TZ6mr85T/vETdY/3aNVUI1LjNLRLS/n7cJQIAPBzhJCdEELms9oMLdlZey7RT+9eHeTnpZu6RWtEWpzaR/K/DQDgDELoEmVmZiozM1NWq1XZ2dmEkIMoKjmpT7P26+NVudp/7MxRom5xoRrRK07XJrdUgI+XiRMCABwBIWQnHBFyTKf3OJu+Olc/bClUzemjRL5eur5blEakxqlTVIjJUwIAzEII2Qkh5PgOlVbqs6z9mr46V/uOVNQ9nhwTohGpcbqhWzRXnAGAmyGE7IQQch42m6Hlu4/oo1W5+mFLgaqttb+tw5r46I60ON2R3kotgvxMnhIA0BgIITshhJzT4bJKfZ61Xx8s31d3xZmPp4euT4nSby9vzcnVAODiCCE7IYScW43VptlbCvXO0t1am3u87vG+CeH67eWt1S+xuTw8LOYNCABoEISQnRBCriNr3zG9u3SPvtt8sG47j8QWgXr4yrYalhwlL08PcwcEANgNIWQnhJDryTtaofd/3Kvpq/NUVlkjSYoN89eDV7TVb3rEcGI1ALgAQshOCCHXVXKyWv9ZsU/vLNmjI+VVkqQWQb66//I2uj0tTk18uR8RADgrQshOCCHXd6LKqhmrc/Xm4t11G76GBnjrnt6tdU/feAX7eZs8IQDgQhFCdkIIuY+qGpu+XLdfUxbu0t5T9yMK8ffWg/3a6O7e8dyxGgCcCCFkJ4SQ+7HaDM3adFCT5u1UTlGZJCk80EcPX5mgkWlxnEMEAE6AELITQsh9WW2G/rshX6/M2anco7VHiCKD/fToVQka3jNWPl5cZQYAjooQshNCCNVWmz7L2q/X5+3UgVPnEMWFBejpwe01uHOkLBbuQwQAjoYQshNCCKdV1lg1fVWeXp+fo8NllZKk7nGhenZoR/Vo1dTk6QAAP0UI2QkhhP9VXlmjtxbv1luLd+tEtVWSNLRrSz01qL3imgWYPB0AQCKE7IYQwi8pLDmpiT9k65OsPBmG5O1p0T19WmvMgEQFcg8iADAVIWQnhBB+zbaDJXrh221asvOwJCki2Ff/b2hHXdu1JecPAYBJCCE7IYRwvhZsL9Kfv96ifafuQdQ3IVz/d30ntW0eaPJkAOB+LuT9m2uAATvo376FZj92hcZlJMnHy0NLcw7rmlcX66XZ23Xy1LlEAADHQwgBduLn7amxGYmaO66frmrfQtVWQ5kLduna15dqXe4xs8cDAJwFIQTYWVyzAL0zqqem3tFD4YG+yikq081TftSEb7dxdAgAHAwhBDQAi8WiazpHau74K3Rjt2jZDOnNxbs15LUlWp933OzxAACnEEJAAwoN8NErt6boX3f1VIsgX+0+XK7fTPlRby7aJZuN6xQAwGyEENAIMjpGaM64fhrapaVqbIYmfLddd09brUOllWaPBgBujRACGklIgLcm395NE27qIj9vDy3OPqTBry3R8l1HzB4NANwWIQQ0IovFohGpcfr60b5qFxGkw2WVuuOdlZq2bI+4pRcAND5CCDBBYkSQvnq0j25IiZLVZujPX2/Vk59t5KoyAGhkhBBgEj9vT71ya4r+39AO8rBIn2bt121vrajb3R4A0PDcIoRuvPFGNW3aVL/5zW/MHgWox2Kx6L7L2+iDe9MU4u+t9XnHdfOUH7X3cLnZowGAW3CLEBo7dqw++OADs8cAflHfxHB98UhvxTT1174jFbp5yo/awP2GAKDBuUUIXXnllQoKCjJ7DOCc2jYP1BeP9FanqGAdKa/SbW+t0MIdRWaPBQAuzfQQWrx4sa677jpFRUXJYrFo5syZP3tNZmam4uPj5efnp7S0NK1atarxBwUaQYsgP814MF2XJ4brRLVVD3yQpblbC80eCwBclukhVF5eruTkZGVmZp71+RkzZmj8+PF67rnntHbtWiUnJ2vQoEEqKjrzN+WUlBR17tz5Z18HDhxorGUAdhPo66V3RvXSkC6RqrLa9NB/svT95oNmjwUALsnL7AEGDx6swYMH/+LzEydO1P3336977rlHkjR16lTNmjVL7777rp5++mlJ0vr16+0yS2VlpSorz1yxU1JSYpfvC1woHy8PTbqtm7w8Nui/Gw5o9Efr9Npthq7tGmX2aADgUkw/InQuVVVVysrKUkZGRt1jHh4eysjI0PLly+3+8yZMmKCQkJC6r9jYWLv/DOB8eXl66JVbU3RTt2hZbYbGfLxO327iyBAA2JNDh9Dhw4dltVoVERFR7/GIiAgVFBSc9/fJyMjQLbfcom+//VYxMTG/GFHPPPOMiouL677y8vIuaX7gUnl6WPTSLcm6pUeMbIY0dvo6Lco+ZPZYAOAyTP9orDHMnTv3vF7n6+srX1/fBp4GuDCeHha9eHNXVVRbNWvjQT347zX692/T1Cs+zOzRAMDpOfQRofDwcHl6eqqwsP5VM4WFhYqMjDRpKqDxeXpY9MrwFF3ZrrlOVtt073urtTm/2OyxAMDpOXQI+fj4qEePHpo3b17dYzabTfPmzVN6erqJkwGNz8fLQ1NG9lBqfJhKK2t093urlHe0wuyxAMCpmR5CZWVlWr9+fd2VX3v27NH69euVm5srSRo/frzefvttvf/++9q2bZsefvhhlZeX111F1hAyMzPVsWNH9erVq8F+BnAx/H089a+7e6pjy2AdLqvS3e+tUnFFtdljAYDTshiGYZg5wMKFC9W/f/+fPT5q1ChNmzZNkjR58mS99NJLKigoUEpKiiZNmqS0tLQGn62kpEQhISEqLi5WcHBwg/884HwVFJ/UjW8s08Hik0prHaYPfpsqXy9Ps8cCAIdwIe/fpoeQIyOE4Mi2HSzRLVOXq6yyRtenROnVW1NksVjMHgsATHch79+mfzQG4OJ0aBmsKXd0l5eHRV+tP6CJc7LNHgkAnA4hBDixyxOb64WbukiSXp+fo683sK0MAFwIQghwcsN7xurBK9pIkp74bAOX1QPABSCEzoKrxuBsnrymvfol1d5j6MF/Z+lwWeWv/0sAAE6WPhdOloYzKT5RrRsyl2nP4XKlxofpP/elyceLv+sAcD+cLA24oRB/b719V08F+Xpp1d6j+r+vt5g9EgA4PEIIcCEJLQL12ogUWSzShytz9fGqXLNHAgCHRggBLuaq9hH6/dXtJEnP/XeLNu3n5GkA+CWEEOCCHu7XVhkdIlRVY9PDH2bpeEWV2SMBgEMihM6Cq8bg7Dw8LHp5eLLiwgK0/9gJjZuxXjYb10UAwP/iqrFz4KoxOLstB4p10xs/qrLGpscHJul3AxLNHgkAGhxXjQGQJHWKCtFfb+gsSZo4N1tLdh4yeSIAcCyEEODibukZqxGpsTIMaczH65R//ITZIwGAwyCEADfw3HWd1Dk6WMcqqvXIh2tVWWM1eyQAcAiEEOAG/Lw9NWVkD4X4e2tD3nG9MGub2SMBgEMghAA3ERsWoInDkyVJ7y/fx071ACBCCHArAzpE6JEr20qSnv58o3KKykyeCADMRQidBfcRgisbPzBJaa3DVF5l1SMfZqmiqsbskQDANNxH6By4jxBcVVHpSQ2dtFSHSit1U7dovTw8WRaLxeyxAMAuuI8QgHNqEeSn10d0k4dF+mJdvqavzjN7JAAwBSEEuKnL2jTT7wed2Zx1cz6bswJwP4QQ4MYeuqKtBrRvoaoamx75cK2KT1SbPRIANCpCCHBjpzdnjWnqr9yjFfr9pxvEaYMA3AkhBLi50AAfvTGyu3w8PTRna6HeXrLb7JEAoNFcVAi9//77mjVrVt2vn3zySYWGhqp3797at2+f3YYD0Di6xoTqj9d1lCT9/fsdWr33qMkTAUDjuKgQeuGFF+Tv7y9JWr58uTIzM/WPf/xD4eHhGjdunF0HBNA47kiL0/UpUbLaDI3+cK0OlVaaPRIANLiLCqG8vDwlJCRIkmbOnKmbb75ZDzzwgCZMmKAlS5bYdUAzcENFuCOLxaIXbuyihBaBKiqt1Njp62S1cb4QANd2USEUGBioI0eOSJJ++OEHDRw4UJLk5+enEydO2G86k4wePVpbt27V6tWrzR4FaFRNfL009Y7uCvDx1I+7jujVudlmjwQADeqiQmjgwIG67777dN999yk7O1tDhgyRJG3ZskXx8fH2nA9AI0toEaQJN3WRJL0+P0cLdhSZPBEANJyLCqHMzEylp6fr0KFD+vzzz9WsWTNJUlZWlkaMGGHXAQE0vutTonXHZXGSpHEz1iv/uPMf6QWAs2GvsXNgrzG4s8oaq26Zulwb9xcrJTZUnzyYLh8v7rgBwPE1+F5j33//vZYuXVr368zMTKWkpOj222/XsWPHLuZbAnAwvl6eyry9u0L8vbU+77he+Hab2SMBgN1dVAg98cQTKikpkSRt2rRJjz/+uIYMGaI9e/Zo/Pjxdh0QgHliwwI0cXiyJGnaj3v1zcYDJk8EAPZ1USG0Z88edexYe/O1zz//XNdee61eeOEFZWZm6rvvvrPrgADMNaBDhB6+sq0k6anPNmrXoTKTJwIA+7moEPLx8VFFRYUkae7cubr66qslSWFhYXVHigC4jscHJimtdZjKq6x65D9rdaLKavZIAGAXFxVCffv21fjx4/X8889r1apVGjp0qCQpOztbMTExdh0QgPm8PD30+ohuCg/01Y7CUj07cxObswJwCRcVQpMnT5aXl5c+++wzTZkyRdHR0ZKk7777Ttdcc41dBwTgGFoE++n1Ed3kYZG+WJuvf69gX0EAzo/L58+By+eBn3tz0S5N+G67vDws+vdv05TetpnZIwFAPRfy/u11sT/EarVq5syZ2rat9pLaTp06adiwYfL09LzYb+kwMjMzlZmZKauV8yCA//XAFW209WCJvlp/QI98mKX/PtpXsWEBZo8FABfloo4I5eTkaMiQIcrPz1e7du0kSTt27FBsbKxmzZqltm3b2n1QM3BECDi7k9W1N1vclF+s9pFB+vzh3mrie9F/rwIAu2rwGyqOGTNGbdu2VV5entauXau1a9cqNzdXrVu31pgxYy5qaADOw8/bU2/d1UPhgb7aXlCq33+6QTZ2qgfghC7qiFCTJk20YsUKdenSpd7jGzZsUJ8+fVRW5hr3GeGIEHBuWfuO6ra3Vqjaamj8wCSNGZBo9kgA0PBHhHx9fVVaWvqzx8vKyuTj43Mx3xKAE+rRKkx/vaGzJGninGzN3lJg8kQAcGEuKoSuvfZaPfDAA1q5cqUMw5BhGFqxYoUeeughDRs2zN4zAnBgt/aK09294yVJ42es17aD3FQVgPO4qBCaNGmS2rZtq/T0dPn5+cnPz0+9e/dWQkKCXn31VTuPCMDRPTu0g3q3babyKqvunbZahSUnzR4JAM7LJd1HKCcnp+7y+Q4dOighIcFugzkCzhECzl9xRbVunLJMuw+Vq3N0sD55MF0BPlxJBqDxXcj793mH0IXsKj9x4sTzfq0jI4SAC5N7pEI3vrFMR8qrlNEhQm/e2UOeHhazxwLgZhrkhorr1q07r9dZLPyhB7iruGYBeuuunhrx9grN3Vaov83apj9d19HssQDgF7HFxjlwRAi4ON9sPKBHP6r9y9Nfru+ku9LjzR0IgFtp8MvnAeBcru0apSevqb3r/J//u0ULtheZPBEAnB0hBKBBPNyvrW7tGSubIY3+aK3W5x03eyQA+BlCCECDsFgs+uuNnXV5Yrgqqqy6571V2nXINe46D8B1EEJnkZmZqY4dO6pXr15mjwI4NW9PD025o4e6xoToWEW17npnlQqKuccQAMfBydLnwMnSgH0cKavULVOXa/fhcrWLCNInD6YrJMDb7LEAuChOlgbgUJoF+ur9e1MVEeyrHYWl+u37q3Wiymr2WABACAFoHLFhAXr/3lQF+3lpzb5jevSjtaqx2sweC4CbI4QANJr2kcF65+5e8vXy0LztRXr80w2y2vh0HoB5CCEAjapXfJjeGNldXh4WfbX+gJ7+fKNsxBAAkxBCABrdgA4RmjSimzw9LPo0a7/++NVmcd0GADMQQgBMMaRLS00cniyLRfpwZa7+8s1WYghAoyOEAJjm+pRo/f3mrpKk95bt1d+/30EMAWhUhBAAUw3vGau/3tBZkjR10S798wdiCEDjIYQAmO6Oy1rpT9d2lCRlLtilv87aRgwBaBSEEACHcG/f1vrL9Z0kSe8s3aM/frWZq8kANDhCCIDDuCs9Xn+/uYssFuk/K3L11Ocbuc8QgAZFCAFwKLf2itPE4cnysEifZu3X+E/Wq5o7UANoIIQQAIdzY7cYTb79zE0XH/hgjSqqasweC4ALIoQAOKQhXVrqrbt6yM/bQwt2HNLtb6/U0fIqs8cC4GIIIQAO66r2EfrwvssUGuCt9XnH9ZupPyrvaIXZYwFwIYQQAIfWo1VTffZQuqJC/LT7ULlunvKjth0sMXssAC6CEALg8BJaBOmLR/qoXUSQikorNXzqci3cUWT2WABcACEEwClEhvjpkwfTldo6TKWVNbp32mpNW7aHGy8CuCSE0FlkZmaqY8eO6tWrl9mjAPiJkABv/fu3qbqlR4xshvTnr7fq/83czOX1AC6axeCvU7+opKREISEhKi4uVnBwsNnjADjFMAy9vWS3Jny3XYYh9W7bTG+M7K7QAB+zRwPgAC7k/ZsjQgCcjsVi0QNXtNXbd/ZUEx9P/bjriK7PXMZJ1AAuGCEEwGlldIzQZw/3VnSov/YdqdCNbyzT51n7zR4LgBMhhAA4tQ4tg/XN7/qqX1Jznay26fFPN+iZLzbpZLXV7NEAOAFCCIDTa9rER+/d3UvjMpJksUgfr8rVLVOXc/NFAL+KEALgEjw8LBqbkahp96QqNMBbm/KLNWTSEv13wwGzRwPgwAghAC6lX1JzzRpzubrHhar0ZI3GfLxO42esV+nJarNHA+CACCEALic61F+fPJiuMQMS5WGRvliXr6GTlmpt7jGzRwPgYAghAC7Jy9ND4wcmacaD6YoO9Vfu0QrdMnW5Jv6wQ1U13IARQC1CCIBL6xUfpm/HXq5hyVGy2gxNmp+jYZOXatP+YrNHA+AACCEALi/E31uTRnRT5u3dFdbER9sLSnXDG8v0j++3q7KGy+wBd0YIAXAbQ7u21JxxV+jari1ltRl6Y+EuDZ20VFn7OHcIcFeEEAC30izQV5Nv766pd3RXeKCPcorKdPOUH/XMFxt1vKLK7PEANDJCCIBbuqZzS80Z10+/6REjSfp4VZ6uenmRPsvaL/aiBtwHIQTAbTVt4qN/3pKsTx5MV1JEoI6WV+n3n27QrW+uUHZhqdnjAWgEFoO/+vyikpIShYSEqLi4WMHBwWaPA6ABVVttemfpHr02d6dOVFvl5WHRXenxGjsgUSEB3maPB+ACXMj7NyF0DoQQ4H72H6vQ/329VXO2FkqSmgZ4a/zAJI1IjZOXJwfRAWdACNkJIQS4r0XZh/TXb7ZqZ1GZJCkpIlB/vLajLk9sbvJkAH4NIWQnhBDg3mqsNn20KlcT52TreEXtXmUZHVroD0M6qE3zQJOnA/BLCCE7IYQASNLxiiq9Nm+n/r18n2pshrw8LLo9LU5jBiQqPNDX7PEA/A9CyE4IIQA/lVNUpr/N2qoFOw5Jkpr4eOqBK9rqvstbq4mvl8nTATiNELITQgjA2fyYc1gTvtuuTfm1+5WFB/pqbEaibusVK29OqAZMRwjZCSEE4JfYbIZmbTqol2bvUO7RCklS6/AmemJQOw3uHCmLxWLyhID7IoTshBAC8Guqamz6eFWuJs3bqSPltVt0JMeG6ulr2iu9bTOTpwPcEyFkJ4QQgPNVVlmjtxbv1r+W7FZFVe2O9pcnhuvJQe3VJSbE5OkA90II2QkhBOBCFZWe1KR5OzV9VZ5qbLV/vA7uHKnxA5OUGBFk8nSAeyCE7IQQAnCxco9U6NW52fpyfb4MQ/KwSDd2i9FjGYmKDQswezzApRFCdkIIAbhUOwpKNXHODs3eUrtlh7enRSNS4/ToVQlqEeRn8nSAayKE7IQQAmAv6/OO65+zd2hpzmFJkp+3h+7p01oPXtFGoQE+Jk8HuJYLef92+Rte5OXl6corr1THjh3VtWtXffrpp2aPBMANpcSG6j/3pemj+9KUEhuqk9U2TVm4S5f/Y4Emz9+p8soas0cE3JLLHxE6ePCgCgsLlZKSooKCAvXo0UPZ2dlq0qTJr/67HBEC0BAMw9DcbUX65+wd2lFYKkkKD/TR6P4Juj0tTr5eniZPCDg3Pho7h+TkZH3zzTeKjY391dcSQgAaktVm6JuNBzRxTrb2Ham9KWN0qL/GDkjUTd2j5cVdqoGL4lQfjS1evFjXXXedoqKiZLFYNHPmzJ+9JjMzU/Hx8fLz81NaWppWrVp1UT8rKytLVqv1vCIIABqap4dF16dEa+74fnrhxi6KCPZV/vETevLzjbr6lcX6ZuMB2Wxu9XdVoNGZHkLl5eVKTk5WZmbmWZ+fMWOGxo8fr+eee05r165VcnKyBg0apKKiorrXpKSkqHPnzj/7OnDgQN1rjh49qrvuuktvvfXWL85SWVmpkpKSel8A0NC8PT10e1qcFj3RX88O6aCmAd7afbhcj360TtdNXqoF24vkZgfvgUbjUB+NWSwWffnll7rhhhvqHktLS1OvXr00efJkSZLNZlNsbKx+97vf6emnnz6v71tZWamBAwfq/vvv15133vmLr/vzn/+s//u///vZ43w0BqAxlZ6s1r+W7NG/luxW+am7VPds1VRPDGqntDZs2wH8Gqf6aOxcqqqqlJWVpYyMjLrHPDw8lJGRoeXLl5/X9zAMQ3fffbeuuuqqc0aQJD3zzDMqLi6u+8rLy7uk+QHgYgT5eWvcwCQteeoqPXBFG/l6eWjNvmO69a0VuvOdldq4/7jZIwIuw6FD6PDhw7JarYqIiKj3eEREhAoKCs7reyxbtkwzZszQzJkzlZKSopSUFG3atOmsr/X19VVwcHC9LwAwS1gTH/1hSActeqK/RqbFycvDoiU7D2vY5GV66N9Zyj51xRmAi+dl9gANrW/fvrLZbGaPAQAXLTLET3+7sYsevKJt3bYd328p0OytBboxJVqPZSQprhnbdgAXw6GPCIWHh8vT01OFhYX1Hi8sLFRkZKRJUwGAOeKaBWjirSma/dgVuqZTpAxD+mJdvq56eaGe/XKTCopPmj0i4HQcOoR8fHzUo0cPzZs3r+4xm82mefPmKT09vcF+bmZmpjp27KhevXo12M8AgIuVFBGkqXf20Fej++jyxHDV2Ax9uDJX/V5aoBe+3aaj5VVmjwg4DdOvGisrK1NOTo4kqVu3bpo4caL69++vsLAwxcXFacaMGRo1apTefPNNpaam6tVXX9Unn3yi7du3/+zcIXvjhooAnMGK3Uf0z9k7tGbfMUlSoK+Xftu3te67vLWC/LxNng5ofE51Z+mFCxeqf//+P3t81KhRmjZtmiRp8uTJeumll1RQUKCUlBRNmjRJaWlpDT4bIQTAWRiGoYU7DumfP+zQlgO190ALDfDWw/3a6q70ePn7sG0H3IdThZAjI4QAOBubzdB3mwv08pwd2n2oXJLUIshXv7sqQbf2ipOPl0OfEQHYBSFkJ4QQAGdVY7Xpy3X5enXuTuUfPyFJimnqr3EZSbqhW7Q8PSwmTwg0HELITgghAM6ussaqGavzNGlejg6XVUqSEloE6vGBSbqmc6QsFoIIrocQukSZmZnKzMyU1WpVdnY2IQTA6VVU1ej9H/dp6qJdKj5RLUnqEh2ix69OUr+k5gQRXAohZCccEQLgaopPVOudJbv1ztI9dfuYpcaH6feD2im1dZjJ0wH2QQjZCSEEwFUdKavUlIW79MGKfaqqqb37/pXtmuv3V7dT5+gQk6cDLg0hZCeEEABXd7D4hCbNy9Ena/JktdW+HQzpEqnxA5OU0CLI5OmAi0MI2QkhBMBd7D1crlfnZuurDQdkGJKHRbqxW4wey0hUbBj7mMG5EEJ2QggBcDc7Ckr18g879MPW2j0evT0tGpEap0f7J6hFsJ/J0wHnhxCyE0IIgLtan3dc/5y9Q0tzDkuS/Lw9NKp3vB66oq2aNvExeTrg3AihS8Tl8wBQ68ddh/XP2Tu0Nve4JCnI10v3Xd5Gv728tQJ9vcwdDvgFhJCdcEQIAGr3MVuwo0gvzc7WtoO1+5iFNfHRw/3a6s70VvLzZh8zOBZCyE4IIQA4w2YzNGvTQU2ck609h2v3MYsI9tWYAYka3jNW3p7sYwbHQAjZCSEEAD9XY7Xpi7X5enVutg4Un5QkxYUFaNzARA1LZh8zmI8QshNCCAB+WWWNVR+vzNXkBTk6XFYlSUqKCNT4ge00qFME23bANISQnRBCAPDrKqpq9N6yvXpz0S6VnKyRJCXHhOj3g9qpb0I4QYRGRwjZCSEEAOev+ES13l68W+8u26OKU/uYXdYmTE8MaqcerdjHDI2HELITQggALtzhskq9sWCX/rNin6qstfuYXdW+hR6/OkmdotjHDA2PELpE3EcIAC5d/vETen3eTn2atb9uH7OhXVtq/MAktW0eaPJ0cGWEkJ1wRAgALt2ew+V6ZU62/rvhgKTafcx+0yNGYwYkKqYp+5jB/gghOyGEAMB+th0s0cs/ZGvuttp9zHw8PXR7Wpwe6d9WLYLYxwz2QwjZCSEEAPa3NveY/jl7h37cdUSS5O/tqbv7xOvBK9ooNIB9zHDpCCE7IYQAoOEsyzmsl2bv0Pq845KkID8vPXhFG93Tp7WasI8ZLgEhZCeEEAA0LMMwNG9bkf75ww5tLyiVJDVr4qNH+idoZFoc+5jhohBCdkIIAUDjsNkMfb3xgF6Zk629RyokSS1D/DRmQKJ+0yOGfcxwQQghOyGEAKBxVVtt+jxrv16bt1MHT+1jFt8sQOMGJum6rlHyYB8znAdCyE4IIQAwx8lqqz5amavMBTk6Ul67j1n7yCCNH5ikgR3ZxwznRghdIm6oCACOobyyRtN+3Kupi3ap9NQ+Zl1jQjQuI0lXtmtOEOGsCCE74YgQADiG4opqvbl4l95btlcnqmv3MUuJDdVjGYnql0QQoT5CyE4IIQBwLIfLKvXW4t36YPlenayu3cese1yoxg1MYqd71CGE7IQQAgDHdKi0Um8u2qV/r9inypraIOrZqqnGDUxS77bNCCI3RwjZCSEEAI6tqOSkpizapQ9X5qrqVBCltg7TuIwkpbdtZvJ0MAshZCeEEAA4h8KSk5qycJc+WpmrKmttEF3WpjaI0toQRO6GELITQggAnMvB4hN6Y8EuzVidVxdEfRKaaVxGknrGh5k8HRoLIWQnhBAAOKcDx08oc0GOPlmTp2pr7dvc5YnheiwjST1aNTV5OjQ0QshOCCEAcG77j1Uoc0GOPl2zXzW22re7fknNNW5gklJiQ80dDg2GELITQggAXEPe0QpNnp+jz9bul/VUEPVvVxtEXWNCzR0OdkcI2QkhBACuZd+Rcr0+P0dfrsuvC6KMDi30WEaSOkeHmDwd7IUQukRssQEArm3v4XJNmr9TM9fl61QPaWDHCD2WkahOUQSRsyOE7IQjQgDg2nYdKtPr83bqqw0HdPrd8JpOkXpsYKLaR/LnvrMihOyEEAIA95BTVKrX5uXom41ngmhIl0iNHZCkdpFB5g6HC0YI2QkhBADuJbuwVK/N3alZmw5KkiwWaWiXlnosI1EJLQgiZ0EI2QkhBADuaXtBiV6bu1PfbS6QVBtEw5KjNGZAoto2DzR5OvwaQshOCCEAcG9bD5To1bnZ+mFroSTJwyJdnxKtR69KIIgcGCFkJ4QQAECSNucX69W5OzV325kgGpYcpd9xhMghEUJ2QggBAH5q0/5ivTYvW3O3FUmqDaLrkqP0u6sSldCCIHIUhJCdEEIAgLOpDaIzR4gsFum6rlEaMyCBk6odACFkJ4QQAOBcNufXBtGcrWeC6NquURpzVYISIwgisxBCdkIIAQDOx5YDxZo0b6dmbzkTREO6tNTYAYlKIogaHSFkJ4QQAOBCbD1Qoknzdur7LWcuux/SuaXGDEjkxoyNiBCyE0IIAHAxth2sDaLT9yGSau9UPWYAW3c0BkLITgghAMCl2F5Qotfn5dTdqVqSBneuDaIOLXlfaSiE0CVi93kAgD3tKCjVpPk79e2mg3V7mQ3qFKExA9jtviEQQnbCESEAgD1lF5Zq0rzavcxOv/te3bE2iDpHE0T2QgjZCSEEAGgIOwtLNWl+/d3uB3aM0FiCyC4IITshhAAADSmnqFSvz8/RfzecCaKMDrVB1CWGILpYhJCdEEIAgMaQU1SmyfN36r8bDsh26l15QPsWGpuRqK4xoabO5owIITshhAAAjWnXoTJNnp+jr9bn1wXRVe1baOyARCXHhpo6mzMhhOyEEAIAmGH3oTJNXpCjmevOBFH/ds01NiNJKQTRryKE7IQQAgCYac/hck2en6OZ6/NlPVVEV7ZrrrEDEtUtrqnJ0zkuQshOCCEAgCPYe7hckxfk6Mt1Z4LoiqTaIOrRiiD6X4SQnRBCAABHsu9IuTIX5OjztWeC6PLEcD2WkagercJMns5xEEJ2QggBABxR7pGKU0G0XzU/CaKxAxLVM54gIoTshBACADiyvKO1QfRZ1pkg6psQrrEZierlxkFECNkJIQQAcAZ5Ryv0xsIcfbrmTBD1bttMj2UkKbW1+wURIWQnhBAAwJnsP1ahNxbu0qdr8lRtrX17T2/TTGMzEnVZm2YmT9d4CCE7IYQAAM4o//gJvbEgR5/8JIjSWodpbEai0ts0k8ViMXnChkUI2QkhBABwZvnHT2jKwhx9snq/qqw2SVJqfJjGDEhUnwTXDSJCyE4IIQCAKzhYfEJTF+7Sx6vzVFVTG0Q9WjXV2AGJujwx3OWCiBCyE0IIAOBKCopPauqiXfp4Va4qTwVRSmyoxmYk6sqk5i4TRISQnRBCAABXVFRyUm8u3q0PV+7TyeraIEqOCdGYAYm6qn0Lpw8iQshOCCEAgCs7VFqpt5fs1r+X79OJaqskqXN0sMZclaiBHSOcNogIITshhAAA7uBw2ZkgqqiqDaIOLYM1dkCCru4YKQ8P5woiQugSZWZmKjMzU1arVdnZ2YQQAMAtHC2v0r+W7Nb7P+5V+akgah8ZpDEDEnVNJ+cJIkLITjgiBABwR8crqvTO0j2atmyvSitrJElJEYH63VWJGtKlpTwdPIgIITshhAAA7qy4olrvLtujd5ftUenJ2iBKaBGo312VoGu7RjlsEBFCdkIIAQAgFZ+o1rRle/XO0t0qORVEbcKb6NGrEjQsOUpenh4mT1gfIWQnhBAAAGeUnqzW+z/u1b+W7tHximpJUnyzAI3un6Abu0U7TBARQnZCCAEA8HNllTX6YPlevb14t46dCqK4sAA92j9BN3aPlrfJQUQI2QkhBADALyuvrNF/VuzTW4t360h5lSQppqm/RvdP0M3dY+TjZU4QEUJ2QggBAPDrKqpq9NHKXE1dtFuHyyolSdGh/nr4yra6pWeMfL08G3UeQshOCCEAAM7fiSqrPlqVq6mLdulQaW0QtQzx08NXttXwnrHy826cICKE7IQQAgDgwp2stmr6qlxNWbRLhSW1QRQR7KuH+7XVbalxDR5EhJCdEEIAAFy8k9VWfbomT28s3KWDxSclSc2DfPVQv7a6PTVO/j4NE0SEkJ0QQgAAXLrKGqs+XbNfUxbuUv7xE5Kk8EBfPXhFG428LE4BPl52/XmEkJ0QQgAA2E9VjU2fr92vzAU52n+sNoiaNfHRzNF9FBsWYLefcyHv3/ZNMAAAgF/g4+WhEalx+k2PGH25Nl+TF+QoNMBbMU39TZuJEAIAAI3K29NDw3vF6sbu0TpUWimLxbw9yxzjXtgAAMDteHt6KCrUvKNBEiEEAADcGCEEAADcFiEEAADcFiEEAADcFiEEAADcFiEEAADcFiEEAADcFiEEAADcFiEEAADcFiEEAADcFiEEAADcFiEEAADcFiEEAADclpfZAzgywzAkSSUlJSZPAgAAztfp9+3T7+PnQgidQ2lpqSQpNjbW5EkAAMCFKi0tVUhIyDlfYzHOJ5fclM1m04EDBxQUFCSLxWLX711SUqLY2Fjl5eUpODjYrt/bEbFe1+dua2a9ro31OjfDMFRaWqqoqCh5eJz7LCCOCJ2Dh4eHYmJiGvRnBAcHu8RvuvPFel2fu62Z9bo21uu8fu1I0GmcLA0AANwWIQQAANwWIWQSX19fPffcc/L19TV7lEbBel2fu62Z9bo21us+OFkaAAC4LY4IAQAAt0UIAQAAt0UIAQAAt0UIAQAAt0UImSQzM1Px8fHy8/NTWlqaVq1aZfZIF2zChAnq1auXgoKC1KJFC91www3asWNHvdecPHlSo0ePVrNmzRQYGKibb75ZhYWF9V6Tm5uroUOHKiAgQC1atNATTzyhmpqaxlzKRXnxxRdlsVj02GOP1T3mauvNz8/XHXfcoWbNmsnf319dunTRmjVr6p43DEN/+tOf1LJlS/n7+ysjI0M7d+6s9z2OHj2qkSNHKjg4WKGhofrtb3+rsrKyxl7KebFarfrjH/+o1q1by9/fX23bttXzzz9fb78iZ17z4sWLdd111ykqKkoWi0UzZ86s97y91rZx40Zdfvnl8vPzU2xsrP7xj3809NLO6lzrra6u1lNPPaUuXbqoSZMmioqK0l133aUDBw7U+x6ust7/9dBDD8lisejVV1+t97gzrdduDDS66dOnGz4+Psa7775rbNmyxbj//vuN0NBQo7Cw0OzRLsigQYOM9957z9i8ebOxfv16Y8iQIUZcXJxRVlZW95qHHnrIiI2NNebNm2esWbPGuOyyy4zevXvXPV9TU2N07tzZyMjIMNatW2d8++23Rnh4uPHMM8+YsaTztmrVKiM+Pt7o2rWrMXbs2LrHXWm9R48eNVq1amXcfffdxsqVK43du3cbs2fPNnJycupe8+KLLxohISHGzJkzjQ0bNhjDhg0zWrdubZw4caLuNddcc42RnJxsrFixwliyZImRkJBgjBgxwowl/aq//e1vRrNmzYxvvvnG2LNnj/Hpp58agYGBxmuvvVb3Gmde87fffms8++yzxhdffGFIMr788st6z9tjbcXFxUZERIQxcuRIY/PmzcbHH39s+Pv7G2+++WZjLbPOudZ7/PhxIyMjw5gxY4axfft2Y/ny5UZqaqrRo0ePet/DVdb7U1988YWRnJxsREVFGa+88kq955xpvfZCCJkgNTXVGD16dN2vrVarERUVZUyYMMHEqS5dUVGRIclYtGiRYRi1f9B4e3sbn376ad1rtm3bZkgyli9fbhhG7f9xPTw8jIKCgrrXTJkyxQgODjYqKysbdwHnqbS01EhMTDTmzJlj9OvXry6EXG29Tz31lNG3b99ffN5msxmRkZHGSy+9VPfY8ePHDV9fX+Pjjz82DMMwtm7dakgyVq9eXfea7777zrBYLEZ+fn7DDX+Rhg4datx77731HrvpppuMkSNHGobhWmv+3zdKe63tjTfeMJo2bVrv9/NTTz1ltGvXroFXdG7nCoPTVq1aZUgy9u3bZxiGa653//79RnR0tLF582ajVatW9ULImdd7KfhorJFVVVUpKytLGRkZdY95eHgoIyNDy5cvN3GyS1dcXCxJCgsLkyRlZWWpurq63lrbt2+vuLi4urUuX75cXbp0UURERN1rBg0apJKSEm3ZsqURpz9/o0eP1tChQ+utS3K99f73v/9Vz549dcstt6hFixbq1q2b3n777brn9+zZo4KCgnrrDQkJUVpaWr31hoaGqmfPnnWvycjIkIeHh1auXNl4izlPvXv31rx585SdnS1J2rBhg5YuXarBgwdLcs01n2avtS1fvlxXXHGFfHx86l4zaNAg7dixQ8eOHWuk1Vyc4uJiWSwWhYaGSnK99dpsNt1555164okn1KlTp58972rrPV+EUCM7fPiwrFZrvTdCSYqIiFBBQYFJU106m82mxx57TH369FHnzp0lSQUFBfLx8an7Q+W0n661oKDgrP8tTj/naKZPn661a9dqwoQJP3vO1da7e/duTZkyRYmJiZo9e7YefvhhjRkzRu+//76kM/Oe6/dyQUGBWrRoUe95Ly8vhYWFOdx6Jenpp5/Wbbfdpvbt28vb21vdunXTY489ppEjR0pyzTWfZq+1OdPv8Z86efKknnrqKY0YMaJu01FXW+/f//53eXl5acyYMWd93tXWe77YfR52MXr0aG3evFlLly41e5QGk5eXp7Fjx2rOnDny8/Mze5wGZ7PZ1LNnT73wwguSpG7dumnz5s2aOnWqRo0aZfJ0DeOTTz7Rhx9+qI8++kidOnXS+vXr9dhjjykqKspl14zaE6eHDx8uwzA0ZcoUs8dpEFlZWXrttde0du1aWSwWs8dxKBwRamTh4eHy9PT82ZVEhYWFioyMNGmqS/Poo4/qm2++0YIFCxQTE1P3eGRkpKqqqnT8+PF6r//pWiMjI8/63+L0c44kKytLRUVF6t69u7y8vOTl5aVFixZp0qRJ8vLyUkREhEutt2XLlurYsWO9xzp06KDc3FxJZ+Y91+/lyMhIFRUV1Xu+pqZGR48edbj1StITTzxRd1SoS5cuuvPOOzVu3Li6I4CuuObT7LU2Z/o9Lp2JoH379mnOnDl1R4Mk11rvkiVLVFRUpLi4uLo/v/bt26fHH39c8fHxklxrvReCEGpkPj4+6tGjh+bNm1f3mM1m07x585Senm7iZBfOMAw9+uij+vLLLzV//ny1bt263vM9evSQt7d3vbXu2LFDubm5dWtNT0/Xpk2b6v2f7/QfRv/7Jmy2AQMGaNOmTVq/fn3dV8+ePTVy5Mi6f3al9fbp0+dnt0PIzs5Wq1atJEmtW7dWZGRkvfWWlJRo5cqV9dZ7/PhxZWVl1b1m/vz5stlsSktLa4RVXJiKigp5eNT/Y9HT01M2m02Sa675NHutLT09XYsXL1Z1dXXda+bMmaN27dqpadOmjbSa83M6gnbu3Km5c+eqWbNm9Z53pfXeeeed2rhxY70/v6KiovTEE09o9uzZklxrvRfE7LO13dH06dMNX19fY9q0acbWrVuNBx54wAgNDa13JZEzePjhh42QkBBj4cKFxsGDB+u+Kioq6l7z0EMPGXFxccb8+fONNWvWGOnp6UZ6enrd86cvJ7/66quN9evXG99//73RvHlzh7yc/Gx+etWYYbjWeletWmV4eXkZf/vb34ydO3caH374oREQEGD85z//qXvNiy++aISGhhpfffWVsXHjRuP6668/6+XW3bp1M1auXGksXbrUSExMdIhLyc9m1KhRRnR0dN3l81988YURHh5uPPnkk3WvceY1l5aWGuvWrTPWrVtnSDImTpxorFu3ru4qKXus7fjx40ZERIRx5513Gps3bzamT59uBAQEmHJ59bnWW1VVZQwbNsyIiYkx1q9fX+/PsJ9eEeUq6z2b/71qzDCca732QgiZ5PXXXzfi4uIMHx8fIzU11VixYoXZI10wSWf9eu+99+pec+LECeORRx4xmjZtagQEBBg33nijcfDgwXrfZ+/evcbgwYMNf39/Izw83Hj88ceN6urqRl7NxfnfEHK19X799ddG586dDV9fX6N9+/bGW2+9Ve95m81m/PGPfzQiIiIMX19fY8CAAcaOHTvqvebIkSPGiBEjjMDAQCM4ONi45557jNLS0sZcxnkrKSkxxo4da8TFxRl+fn5GmzZtjGeffbbeG6Mzr3nBggVn/f/sqFGjDMOw39o2bNhg9O3b1/D19TWio6ONF198sbGWWM+51rtnz55f/DNswYIFdd/DVdZ7NmcLIWdar71YDOMnt0wFAABwI5wjBAAA3BYhBAAA3BYhBAAA3BYhBAAA3BYhBAAA3BYhBAAA3BYhBAAA3BYhBAAA3BYhBAAXYOHChbJYLD/bXBeAcyKEAACA2yKEAACA2yKEADgVm82mCRMmqHXr1vL391dycrI+++wzSWc+tpo1a5a6du0qPz8/XXbZZdq8eXO97/H555+rU6dO8vX1VXx8vF5++eV6z1dWVuqpp55SbGysfH19lZCQoHfeeafea7KystSzZ08FBASod+/e2rFjR8MuHECDIIQAOJUJEybogw8+0NSpU7VlyxaNGzdOd9xxhxYtWlT3mieeeEIvv/yyVq9erebNm+u6665TdXW1pNqAGT58uG677TZt2rRJf/7zn/XHP/5R06ZNq/v377rrLn388ceaNGmStm3bpjfffFOBgYH15nj22Wf18ssva82aNfLy8tK9997bKOsHYF/sPg/AaVRWViosLExz585Venp63eP33XefKioq9MADD6h///6aPn26br31VknS0aNHFRMTo2nTpmn48OEaOXKkDh06pB9++KHu33/yySc1a9YsbdmyRdnZ2WrXrp3mzJmjjIyMn82wcOFC9e/fX3PnztWAAQMkSd9++62GDh2qEydOyM/Pr4H/KwCwJ44IAXAaOTk5qqio0MCBAxUYGFj39cEHH2jXrl11r/tpJIWFhaldu3batm2bJGnbtm3q06dPve/bp08f7dy5U1arVevXr5enp6f69et3zlm6du1a988tW7aUJBUVFV3yGgE0Li+zBwCA81VWViZJmjVrlqKjo+s95+vrWy+GLpa/v/95vc7b27vuny0Wi6Ta85cAOBeOCAFwGh07dpSvr69yc3OVkJBQ7ys2NrbudStWrKj752PHjik7O1sdOnSQJHXo0EHLli2r932XLVumpKQkeXp6qkuXLrLZbPXOOQLgujgiBMBpBAUF6fe//73GjRsnm82mvn37qri4WMuWLVNwcLBatWolSfrLX/6iZs2aKSIiQs8++6zCw8N1ww03SJIef/xx9erVS88//7xuvfVWLV++XJMnT9Ybb7whSYqPj9eoUaN07733atKkSUpOTta+fftUVFSk4cOHm7V0AA2EEALgVJ5//nk1b95cEyZM0O7duxUaGqru3bvrD3/4Q91HUy+++KLGjh2rnTt3KiUlRV9//bV8fHwkSd27d9cnn3yiP/3pT3r++efVsmVL/eUvf9Hdd99d9zOmTJmiP/zhD3rkkUd05MgRxcXF6Q9/+IMZywXQwLhqDIDLOH1F17FjxxQaGmr2OACcAOcIAQAAt0UIAQAAt8VHYwAAwG1xRAgAALgtQggAALgtQggAALgtQggAALgtQggAALgtQggAALgtQggAALgtQggAALit/w+jFHebW6GgXgAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"list_ = [\n",
|
|
" idx for idx, s in enumerate(trainer.callbacks)\n",
|
|
" if isinstance(s, MetricTracker)\n",
|
|
" ]\n",
|
|
"trainer_metrics = trainer.callbacks[list_[0]].metrics\n",
|
|
"\n",
|
|
"loss = trainer_metrics['val_loss']\n",
|
|
"epochs = range(len(loss))\n",
|
|
"plt.plot(epochs, loss.cpu())\n",
|
|
"# plotting\n",
|
|
"plt.xlabel('epoch')\n",
|
|
"plt.ylabel('loss')\n",
|
|
"plt.yscale('log')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "58172899",
|
|
"metadata": {},
|
|
"source": [
|
|
"As we can see the loss has not reached a minimum, suggesting that we could train for longer"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "33e672da",
|
|
"metadata": {},
|
|
"source": [
|
|
"## What's next?\n",
|
|
"\n",
|
|
"Congratulations on completing the introductory tutorial of **PINA**! There are several directions you can go now:\n",
|
|
"\n",
|
|
"1. Train the network for longer or with different layer sizes and assert the finaly accuracy\n",
|
|
"\n",
|
|
"2. Train the network using other types of models (see `pina.model`)\n",
|
|
"\n",
|
|
"3. GPU training and speed benchmarking\n",
|
|
"\n",
|
|
"4. Many more..."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.12.7"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|