168 lines
5.4 KiB
Python
168 lines
5.4 KiB
Python
""" Module for LabelTensor """
|
|
import torch
|
|
|
|
|
|
class LabelTensor(torch.Tensor):
|
|
"""Torch tensor with a label for any column."""
|
|
|
|
@staticmethod
|
|
def __new__(cls, x, labels, *args, **kwargs):
|
|
return super().__new__(cls, x, *args, **kwargs)
|
|
|
|
def __init__(self, x, labels):
|
|
'''
|
|
Construct a `LabelTensor` by passing a tensor and a list of column
|
|
labels. Such labels uniquely identify the columns of the tensor,
|
|
allowing for an easier manipulation.
|
|
|
|
:param torch.Tensor x: the data tensor.
|
|
:param labels: the labels of the columns.
|
|
:type labels: str or iterable(str)
|
|
|
|
:Example:
|
|
>>> from pina import LabelTensor
|
|
>>> tensor = LabelTensor(torch.rand((2000, 3)), ['a', 'b', 'c'])
|
|
>>> tensor
|
|
tensor([[6.7116e-02, 4.8892e-01, 8.9452e-01],
|
|
[9.2392e-01, 8.2065e-01, 4.1986e-04],
|
|
[8.9266e-01, 5.5446e-01, 6.3500e-01],
|
|
...,
|
|
[5.8194e-01, 9.4268e-01, 4.1841e-01],
|
|
[1.0246e-01, 9.5179e-01, 3.7043e-02],
|
|
[9.6150e-01, 8.0656e-01, 8.3824e-01]])
|
|
>>> tensor.extract('a')
|
|
tensor([[0.0671],
|
|
[0.9239],
|
|
[0.8927],
|
|
...,
|
|
[0.5819],
|
|
[0.1025],
|
|
[0.9615]])
|
|
>>> tensor.extract(['a', 'b'])
|
|
tensor([[0.0671, 0.4889],
|
|
[0.9239, 0.8207],
|
|
[0.8927, 0.5545],
|
|
...,
|
|
[0.5819, 0.9427],
|
|
[0.1025, 0.9518],
|
|
[0.9615, 0.8066]])
|
|
>>> tensor.extract(['b', 'a'])
|
|
tensor([[0.4889, 0.0671],
|
|
[0.8207, 0.9239],
|
|
[0.5545, 0.8927],
|
|
...,
|
|
[0.9427, 0.5819],
|
|
[0.9518, 0.1025],
|
|
[0.8066, 0.9615]])
|
|
'''
|
|
if x.ndim == 1:
|
|
x = x.reshape(-1, 1)
|
|
|
|
if isinstance(labels, str):
|
|
labels = [labels]
|
|
|
|
if len(labels) != x.shape[1]:
|
|
raise ValueError(
|
|
'the tensor has not the same number of columns of '
|
|
'the passed labels.'
|
|
)
|
|
self.labels = labels
|
|
|
|
def clone(self, *args, **kwargs):
|
|
"""
|
|
Clone the LabelTensor. For more details, see
|
|
:meth:`torch.Tensor.clone`.
|
|
|
|
:return: a copy of the tensor
|
|
:rtype: LabelTensor
|
|
"""
|
|
return LabelTensor(super().clone(*args, **kwargs), self.labels)
|
|
|
|
def to(self, *args, **kwargs):
|
|
"""
|
|
Performs Tensor dtype and/or device conversion. For more details, see
|
|
:meth:`torch.Tensor.to`.
|
|
"""
|
|
tmp = super().to(*args, **kwargs)
|
|
new = self.__class__.clone(self)
|
|
new.data = tmp.data
|
|
return new
|
|
|
|
def extract(self, label_to_extract):
|
|
"""
|
|
Extract the subset of the original tensor by returning all the columns
|
|
corresponding to the passed `label_to_extract`.
|
|
|
|
:param label_to_extract: the label(s) to extract.
|
|
:type label_to_extract: str or iterable(str)
|
|
:raises TypeError: labels are not str
|
|
:raises ValueError: label to extract is not in the labels list
|
|
"""
|
|
|
|
if isinstance(label_to_extract, str):
|
|
label_to_extract = [label_to_extract]
|
|
elif isinstance(label_to_extract, (tuple, list)): # TODO
|
|
pass
|
|
else:
|
|
raise TypeError(
|
|
'`label_to_extract` should be a str, or a str iterator')
|
|
|
|
indeces = []
|
|
for f in label_to_extract:
|
|
try:
|
|
indeces.append(self.labels.index(f))
|
|
except ValueError:
|
|
raise ValueError(f'`{f}` not in the labels list')
|
|
|
|
new_data = self[:, indeces].float()
|
|
new_labels = [self.labels[idx] for idx in indeces]
|
|
|
|
extracted_tensor = new_data.as_subclass(LabelTensor)
|
|
extracted_tensor.labels = new_labels
|
|
|
|
|
|
return extracted_tensor
|
|
|
|
def append(self, lt, mode='std'):
|
|
"""
|
|
Return a copy of the merged tensors.
|
|
|
|
:param LabelTensor lt: the tensor to merge.
|
|
:param str mode: {'std', 'first', 'cross'}
|
|
:return: the merged tensors
|
|
:rtype: LabelTensor
|
|
"""
|
|
if set(self.labels).intersection(lt.labels):
|
|
raise RuntimeError('The tensors to merge have common labels')
|
|
|
|
new_labels = self.labels + lt.labels
|
|
if mode == 'std':
|
|
new_tensor = torch.cat((self, lt), dim=1)
|
|
elif mode == 'first':
|
|
raise NotImplementedError
|
|
elif mode == 'cross':
|
|
tensor1 = self
|
|
tensor2 = lt
|
|
n1 = tensor1.shape[0]
|
|
n2 = tensor2.shape[0]
|
|
|
|
tensor1 = LabelTensor(
|
|
tensor1.repeat(n2, 1),
|
|
labels=tensor1.labels)
|
|
tensor2 = LabelTensor(
|
|
tensor2.repeat_interleave(n1, dim=0),
|
|
labels=tensor2.labels)
|
|
new_tensor = torch.cat((tensor1, tensor2), dim=1)
|
|
|
|
new_tensor = new_tensor.as_subclass(LabelTensor)
|
|
new_tensor.labels = new_labels
|
|
return new_tensor
|
|
|
|
def __str__(self):
|
|
if hasattr(self, 'labels'):
|
|
s = f'labels({str(self.labels)})\n'
|
|
else:
|
|
s = 'no labels\n'
|
|
s += super().__str__()
|
|
return s
|