Files
PINA/pina/pinn.py
2022-05-11 16:42:11 +02:00

283 lines
10 KiB
Python

from .problem import AbstractProblem
import torch
import matplotlib.pyplot as plt
import numpy as np
from pina.label_tensor import LabelTensor
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
class PINN(object):
def __init__(self,
problem,
model,
optimizer=torch.optim.Adam,
lr=0.001,
regularizer=0.00001,
dtype=torch.float32,
device='cpu',
error_norm='mse'):
'''
:param Problem problem: the formualation of the problem.
:param torch.nn.Module model: the neural network model to use.
:param float lr: the learning rate; default is 0.001.
:param float regularizer: the coefficient for L2 regularizer term.
:param type dtype: the data type to use for the model. Valid option are
`torch.float32` and `torch.float64` (`torch.float16` only on GPU);
default is `torch.float64`.
'''
if dtype == torch.float64:
raise NotImplementedError('only float for now')
self.problem = problem
# self._architecture = architecture if architecture else dict()
# self._architecture['input_dimension'] = self.problem.domain_bound.shape[0]
# self._architecture['output_dimension'] = len(self.problem.variables)
# if hasattr(self.problem, 'params_domain'):
# self._architecture['input_dimension'] += self.problem.params_domain.shape[0]
self.error_norm = error_norm
if device == 'cuda' and not torch.cuda.is_available():
raise RuntimeError
self.device = torch.device(device)
self.dtype = dtype
self.history = []
self.model = model
self.model.to(dtype=self.dtype, device=self.device)
self.truth_values = {}
self.input_pts = {}
self.trained_epoch = 0
self.optimizer = optimizer(
self.model.parameters(), lr=lr, weight_decay=regularizer)
@property
def problem(self):
return self._problem
@problem.setter
def problem(self, problem):
if not isinstance(problem, AbstractProblem):
raise TypeError
self._problem = problem
def _compute_norm(self, vec):
"""
Compute the norm of the `vec` one-dimensional tensor based on the
`self.error_norm` attribute.
.. todo: complete
:param vec torch.tensor: the tensor
"""
if isinstance(self.error_norm, int):
return torch.sum(torch.abs(vec**self.error_norm))**(1./self.error_norm)
elif self.error_norm == 'mse':
return torch.mean(vec**2)
elif self.error_norm == 'me':
return torch.mean(torch.abs(vec))
else:
raise RuntimeError
def save_state(self, filename):
checkpoint = {
'epoch': self.trained_epoch,
'model_state': self.model.state_dict(),
'optimizer_state' : self.optimizer.state_dict(),
'optimizer_class' : self.optimizer.__class__,
'history' : self.history,
'input_points_dict' : self.input_pts,
}
# TODO save also architecture param?
#if isinstance(self.model, DeepFeedForward):
# checkpoint['model_class'] = self.model.__class__
# checkpoint['model_structure'] = {
# }
torch.save(checkpoint, filename)
def load_state(self, filename):
checkpoint = torch.load(filename)
self.model.load_state_dict(checkpoint['model_state'])
self.optimizer = checkpoint['optimizer_class'](self.model.parameters())
self.optimizer.load_state_dict(checkpoint['optimizer_state'])
self.trained_epoch = checkpoint['epoch']
self.history = checkpoint['history']
self.input_pts = checkpoint['input_points_dict']
return self
def span_pts(self, *args, **kwargs):
"""
>>> pinn.span_pts(n=10, mode='grid')
>>> pinn.span_pts(n=10, mode='grid', variables=['x'])
"""
def merge_tensors(tensors): # name to be changed
if len(tensors) == 2:
tensor1 = tensors[0]
tensor2 = tensors[1]
n1 = tensor1.shape[0]
n2 = tensor2.shape[0]
tensor1 = LabelTensor(tensor1.repeat(n2, 1), labels=tensor1.labels)
tensor2 = LabelTensor(
tensor2.repeat_interleave(n1, dim=0), labels=tensor2.labels)
return tensor1.append(tensor2)
else:
pass
if isinstance(args[0], int) and isinstance(args[1], str):
pass
variables = self.problem.input_variables
elif all(isinstance(arg, dict) for arg in args):
print(args)
arguments = args
pass
elif all(key in kwargs for key in ['n', 'mode']):
variables = self.problem.input_variables
pass
else:
raise RuntimeError
locations = kwargs.get('locations', 'all')
if locations == 'all':
locations = [condition for condition in self.problem.conditions]
for location in locations:
condition = self.problem.conditions[location]
pts = merge_tensors([
condition.location.sample(
argument['n'],
argument['mode'],
variables=argument['variables'])
for argument in arguments])
self.input_pts[location] = pts #.double() # TODO
self.input_pts[location] = (
self.input_pts[location].to(dtype=self.dtype,
device=self.device))
self.input_pts[location].requires_grad_(True)
self.input_pts[location].retain_grad()
def plot_pts(self, locations='all'):
import matplotlib
# matplotlib.use('GTK3Agg')
if locations == 'all':
locations = [condition for condition in self.problem.conditions]
for location in locations:
x = self.input_pts[location].extract(['x'])
y = self.input_pts[location].extract(['y'])
plt.plot(x.detach(), y.detach(), '.', label=location)
# np.savetxt('burgers_{}_pts.txt'.format(location), self.input_pts[location].tensor.detach(), header='x y', delimiter=' ')
plt.legend()
plt.show()
def train(self, stop=100, frequency_print=2, trial=None):
epoch = 0
while True:
losses = []
for condition_name in self.problem.conditions:
condition = self.problem.conditions[condition_name]
if hasattr(condition, 'function'):
pts = self.input_pts[condition_name]
predicted = self.model(pts)
if isinstance(condition.function, list):
for function in condition.function:
residuals = function(pts, predicted)
local_loss = condition.data_weight*self._compute_norm(residuals)
losses.append(local_loss)
else:
residuals = condition.function(pts, predicted)
local_loss = condition.data_weight*self._compute_norm(residuals)
losses.append(local_loss)
elif hasattr(condition, 'output_points'):
pts = condition.input_points
# print(pts)
predicted = self.model(pts)
# print(predicted)
residuals = predicted - condition.output_points
local_loss = condition.data_weight*self._compute_norm(residuals)
losses.append(local_loss)
self.optimizer.zero_grad()
sum(losses).backward()
self.optimizer.step()
self.trained_epoch += 1
if epoch % 50 == 0:
self.history.append([loss.detach().item() for loss in losses])
epoch += 1
if trial:
import optuna
trial.report(sum(losses), epoch)
if trial.should_prune():
raise optuna.exceptions.TrialPruned()
if isinstance(stop, int):
if epoch == stop:
break
elif isinstance(stop, float):
if sum(losses) < stop:
break
if epoch % frequency_print == 0:
print('[epoch {:05d}] {:.6e} '.format(self.trained_epoch, sum(losses).item()), end='')
for loss in losses:
print('{:.6e} '.format(loss), end='')
print()
return sum(losses).item()
def error(self, dtype='l2', res=100):
import numpy as np
if hasattr(self.problem, 'truth_solution') and self.problem.truth_solution is not None:
pts_container = []
for mn, mx in self.problem.domain_bound:
pts_container.append(np.linspace(mn, mx, res))
grids_container = np.meshgrid(*pts_container)
Z_true = self.problem.truth_solution(*grids_container)
elif hasattr(self.problem, 'data_solution') and self.problem.data_solution is not None:
grids_container = self.problem.data_solution['grid']
Z_true = self.problem.data_solution['grid_solution']
try:
unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T.to(dtype=self.dtype, device=self.device)
Z_pred = self.model(unrolled_pts)
Z_pred = Z_pred.detach().numpy().reshape(grids_container[0].shape)
if dtype == 'l2':
return np.linalg.norm(Z_pred - Z_true)/np.linalg.norm(Z_true)
else:
# TODO H1
pass
except:
print("")
print("Something went wrong...")
print("Not able to compute the error. Please pass a data solution or a true solution")