143 lines
6.1 KiB
Python
143 lines
6.1 KiB
Python
""" Module for plotting. """
|
|
import matplotlib
|
|
#matplotlib.use('Qt5Agg')
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import torch
|
|
|
|
from pina import LabelTensor
|
|
from pina import PINN
|
|
from .problem import SpatialProblem, TimeDependentProblem
|
|
#from pina.tdproblem1d import TimeDepProblem1D
|
|
|
|
|
|
class Plotter:
|
|
|
|
def _plot_2D(self, obj, method='contourf'):
|
|
"""
|
|
"""
|
|
if not isinstance(obj, PINN):
|
|
raise RuntimeError
|
|
|
|
res = 256
|
|
pts = obj.problem.spatial_domain.discretize(res, 'grid')
|
|
grids_container = [
|
|
pts[:, 0].reshape(res, res),
|
|
pts[:, 1].reshape(res, res),
|
|
]
|
|
pts = LabelTensor(torch.tensor(pts), obj.problem.input_variables)
|
|
predicted_output = obj.model(pts.tensor)
|
|
|
|
if hasattr(obj.problem, 'truth_solution'):
|
|
truth_output = obj.problem.truth_solution(*pts.tensor.T).float()
|
|
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(16, 6))
|
|
|
|
cb = getattr(axes[0], method)(*grids_container, predicted_output.reshape(res, res).detach())
|
|
fig.colorbar(cb, ax=axes[0])
|
|
cb = getattr(axes[1], method)(*grids_container, truth_output.reshape(res, res).detach())
|
|
fig.colorbar(cb, ax=axes[1])
|
|
cb = getattr(axes[2], method)(*grids_container, (truth_output-predicted_output.float().flatten()).detach().reshape(res, res))
|
|
fig.colorbar(cb, ax=axes[2])
|
|
else:
|
|
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(8, 6))
|
|
cb = getattr(axes, method)(*grids_container, predicted_output.reshape(res, res).detach())
|
|
fig.colorbar(cb, ax=axes)
|
|
|
|
|
|
def _plot_1D_TimeDep(self, obj, method='contourf'):
|
|
"""
|
|
"""
|
|
if not isinstance(obj, PINN):
|
|
raise RuntimeError
|
|
|
|
res = 256
|
|
grids_container = np.meshgrid(
|
|
obj.problem.spatial_domain.discretize(res, 'grid'),
|
|
obj.problem.temporal_domain.discretize(res, 'grid'),
|
|
)
|
|
pts = np.hstack([
|
|
grids_container[0].reshape(-1, 1),
|
|
grids_container[1].reshape(-1, 1),
|
|
])
|
|
pts = LabelTensor(torch.tensor(pts), obj.problem.input_variables)
|
|
predicted_output = obj.model(pts.tensor)
|
|
|
|
if hasattr(obj.problem, 'truth_solution'):
|
|
truth_output = obj.problem.truth_solution(*pts.tensor.T).float()
|
|
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(16, 6))
|
|
|
|
cb = getattr(axes[0], method)(*grids_container, predicted_output.reshape(res, res).detach())
|
|
fig.colorbar(cb, ax=axes[0])
|
|
cb = getattr(axes[1], method)(*grids_container, truth_output.reshape(res, res).detach())
|
|
fig.colorbar(cb, ax=axes[1])
|
|
cb = getattr(axes[2], method)(*grids_container, (truth_output-predicted_output.float().flatten()).detach().reshape(res, res))
|
|
fig.colorbar(cb, ax=axes[2])
|
|
else:
|
|
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(8, 6))
|
|
cb = getattr(axes, method)(*grids_container, predicted_output.reshape(res, res).detach())
|
|
fig.colorbar(cb, ax=axes)
|
|
|
|
|
|
|
|
def plot(self, obj, method='contourf', component='u', parametric=False, params_value=1, filename=None):
|
|
"""
|
|
"""
|
|
res = 256
|
|
pts = obj.problem.domain.sample(res, 'grid')
|
|
if parametric:
|
|
pts_params = torch.ones(pts.shape[0], len(obj.problem.parameters), dtype=pts.dtype)*params_value
|
|
pts_params = LabelTensor(pts_params, obj.problem.parameters)
|
|
pts = pts.append(pts_params)
|
|
grids_container = [
|
|
pts[:, 0].reshape(res, res),
|
|
pts[:, 1].reshape(res, res),
|
|
]
|
|
ind_dict = {}
|
|
all_locations = [condition for condition in obj.problem.conditions]
|
|
for location in all_locations:
|
|
if hasattr(obj.problem.conditions[location], 'location'):
|
|
keys_range_ = obj.problem.conditions[location].location.range_.keys()
|
|
if ('x' in keys_range_) and ('y' in keys_range_):
|
|
range_x = obj.problem.conditions[location].location.range_['x']
|
|
range_y = obj.problem.conditions[location].location.range_['y']
|
|
ind_x = np.where(np.logical_or(pts[:, 0]<range_x[0], pts[:, 0]>range_x[1]))
|
|
ind_y = np.where(np.logical_or(pts[:, 1]<range_y[0], pts[:, 1]>range_y[1]))
|
|
ind_to_exclude = np.union1d(ind_x, ind_y)
|
|
ind_dict[location] = ind_to_exclude
|
|
import functools
|
|
from functools import reduce
|
|
|
|
final_inds = reduce(np.intersect1d, ind_dict.values())
|
|
predicted_output = obj.model(pts)
|
|
predicted_output = predicted_output.extract([component])
|
|
predicted_output[final_inds] = np.nan
|
|
if hasattr(obj.problem, 'truth_solution'):
|
|
truth_output = obj.problem.truth_solution(*pts.T).float()
|
|
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(16, 6))
|
|
|
|
cb = getattr(axes[0], method)(*grids_container, predicted_output.reshape(res, res).detach())
|
|
fig.colorbar(cb, ax=axes[0])
|
|
cb = getattr(axes[1], method)(*grids_container, truth_output.reshape(res, res).detach())
|
|
fig.colorbar(cb, ax=axes[1])
|
|
cb = getattr(axes[2], method)(*grids_container, (truth_output-predicted_output.float().flatten()).detach().reshape(res, res))
|
|
fig.colorbar(cb, ax=axes[2])
|
|
else:
|
|
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(8, 6))
|
|
cb = getattr(axes, method)(*grids_container, predicted_output.reshape(res, res).detach(), levels=32)
|
|
fig.colorbar(cb, ax=axes)
|
|
|
|
if filename:
|
|
plt.title('Output {} with parameter {}'.format(component, params_value))
|
|
plt.savefig(filename)
|
|
else:
|
|
plt.show()
|
|
|
|
def plot_samples(self, obj):
|
|
for location in obj.input_pts:
|
|
pts_x = obj.input_pts[location].extract(['x'])
|
|
pts_y = obj.input_pts[location].extract(['y'])
|
|
plt.plot(pts_x.detach(), pts_y.detach(), '.', label=location)
|
|
|
|
plt.legend()
|
|
plt.show()
|