44 lines
1.5 KiB
Python
44 lines
1.5 KiB
Python
from pina.solvers import PINN
|
|
from pina.trainer import Trainer
|
|
from pina.model import FeedForward
|
|
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
|
from pina.callbacks import R3Refinement
|
|
|
|
|
|
# make the problem
|
|
poisson_problem = Poisson()
|
|
boundaries = ['nil_g1', 'nil_g2', 'nil_g3', 'nil_g4']
|
|
n = 10
|
|
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
|
model = FeedForward(len(poisson_problem.input_variables),
|
|
len(poisson_problem.output_variables))
|
|
|
|
# make the solver
|
|
solver = PINN(problem=poisson_problem, model=model)
|
|
|
|
|
|
def test_r3constructor():
|
|
R3Refinement(sample_every=10)
|
|
|
|
|
|
def test_r3refinment_routine():
|
|
# make the trainer
|
|
trainer = Trainer(solver=solver,
|
|
callbacks=[R3Refinement(sample_every=1)],
|
|
accelerator='cpu',
|
|
max_epochs=5)
|
|
trainer.train()
|
|
|
|
def test_r3refinment_routine():
|
|
model = FeedForward(len(poisson_problem.input_variables),
|
|
len(poisson_problem.output_variables))
|
|
solver = PINN(problem=poisson_problem, model=model)
|
|
trainer = Trainer(solver=solver,
|
|
callbacks=[R3Refinement(sample_every=1)],
|
|
accelerator='cpu',
|
|
max_epochs=5)
|
|
before_n_points = {loc : len(pts) for loc, pts in trainer.solver.problem.input_pts.items()}
|
|
trainer.train()
|
|
after_n_points = {loc : len(pts) for loc, pts in trainer.solver.problem.input_pts.items()}
|
|
assert before_n_points == after_n_points
|