44 lines
1.4 KiB
Python
44 lines
1.4 KiB
Python
""" """
|
|
import torch
|
|
|
|
from .location import Location
|
|
|
|
class Condition:
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
if 'data_weight' in kwargs:
|
|
self.data_weight = kwargs['data_weight']
|
|
if not 'data_weight' in kwargs:
|
|
self.data_weight = 1.
|
|
|
|
if len(args) == 2:
|
|
|
|
if (isinstance(args[0], torch.Tensor) and
|
|
isinstance(args[1], torch.Tensor)):
|
|
self.input_points = args[0]
|
|
self.output_points = args[1]
|
|
elif isinstance(args[0], Location) and callable(args[1]):
|
|
self.location = args[0]
|
|
self.function = args[1]
|
|
elif isinstance(args[0], Location) and isinstance(args[1], list):
|
|
self.location = args[0]
|
|
self.function = args[1]
|
|
else:
|
|
raise ValueError
|
|
|
|
elif not args and len(kwargs) >= 2:
|
|
|
|
if 'input_points' in kwargs and 'output_points' in kwargs:
|
|
self.input_points = kwargs['input_points']
|
|
self.output_points = kwargs['output_points']
|
|
elif 'location' in kwargs and 'function' in kwargs:
|
|
self.location = kwargs['location']
|
|
self.function = kwargs['function']
|
|
else:
|
|
raise ValueError
|
|
else:
|
|
raise ValueError
|
|
|
|
if hasattr(self, 'function') and not isinstance(self.function, list):
|
|
self.function = [self.function]
|