Files
PINA/pina/model/layers/utils_convolution.py
Dario Coscia 0bcaf62e59 Continuous Convolution (#69)
* network handling update
* adding tutorial
* docs
2023-02-27 10:59:18 +01:00

49 lines
1.1 KiB
Python

import torch
def check_point(x, current_stride, dim):
max_stride = current_stride + dim
indeces = torch.logical_and(x[..., :-1] < max_stride,
x[..., :-1] >= current_stride).all(dim=-1)
return indeces
def map_points_(x, filter_position):
"""Mapping function n dimensional case
:param x: input data of two dimension
:type x: torch.tensor
:param filter_position: position of the filter
:type dim: list[numeric]
:return: data mapped inplace
:rtype: torch.tensor
"""
x.add_(-filter_position)
return x
def optimizing(f):
"""Decorator for calling a function just once
:param f: python function
:type f: function
"""
def wrapper(*args, **kwargs):
if kwargs['type'] == 'forward':
if not wrapper.has_run_inverse:
wrapper.has_run_inverse = True
return f(*args, **kwargs)
if kwargs['type'] == 'inverse':
if not wrapper.has_run:
wrapper.has_run = True
return f(*args, **kwargs)
wrapper.has_run_inverse = False
wrapper.has_run = False
return wrapper