* equation class * difference domain * dummy dataloader * writer class * refactoring and minor fix
353 lines
12 KiB
Python
353 lines
12 KiB
Python
""" Module for PINN """
|
|
import torch
|
|
import torch.optim.lr_scheduler as lrs
|
|
|
|
from .problem import AbstractProblem
|
|
from .model import Network
|
|
from .label_tensor import LabelTensor
|
|
from .utils import merge_tensors
|
|
from .dataset import DummyLoader
|
|
|
|
|
|
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
|
|
|
|
|
|
class PINN(object):
|
|
|
|
def __init__(self,
|
|
problem,
|
|
model,
|
|
extra_features=None,
|
|
optimizer=torch.optim.Adam,
|
|
optimizer_kwargs=None,
|
|
lr=0.001,
|
|
lr_scheduler_type=lrs.ConstantLR,
|
|
lr_scheduler_kwargs={"factor": 1, "total_iters": 0},
|
|
regularizer=0.00001,
|
|
batch_size=None,
|
|
dtype=torch.float32,
|
|
device='cpu',
|
|
writer=None,
|
|
error_norm='mse'):
|
|
'''
|
|
:param AbstractProblem problem: the formualation of the problem.
|
|
:param torch.nn.Module model: the neural network model to use.
|
|
:param torch.nn.Module extra_features: the additional input
|
|
features to use as augmented input.
|
|
:param torch.optim.Optimizer optimizer: the neural network optimizer to
|
|
use; default is `torch.optim.Adam`.
|
|
:param dict optimizer_kwargs: Optimizer constructor keyword args.
|
|
:param float lr: the learning rate; default is 0.001.
|
|
:param torch.optim.LRScheduler lr_scheduler_type: Learning
|
|
rate scheduler.
|
|
:param dict lr_scheduler_kwargs: LR scheduler constructor keyword args.
|
|
:param float regularizer: the coefficient for L2 regularizer term.
|
|
:param type dtype: the data type to use for the model. Valid option are
|
|
`torch.float32` and `torch.float64` (`torch.float16` only on GPU);
|
|
default is `torch.float64`.
|
|
:param str device: the device used for training; default 'cpu'
|
|
option include 'cuda' if cuda is available.
|
|
:param (str, int) error_norm: the loss function used as minimizer,
|
|
default mean square error 'mse'. If string options include mean
|
|
error 'me' and mean square error 'mse'. If int, the p-norm is
|
|
calculated where p is specifined by the int input.
|
|
:param int batch_size: batch size for the dataloader; default 5.
|
|
'''
|
|
|
|
if dtype == torch.float64:
|
|
raise NotImplementedError('only float for now')
|
|
|
|
self.problem = problem
|
|
|
|
# self._architecture = architecture if architecture else dict()
|
|
# self._architecture['input_dimension'] = self.problem.domain_bound.shape[0]
|
|
# self._architecture['output_dimension'] = len(self.problem.variables)
|
|
# if hasattr(self.problem, 'params_domain'):
|
|
# self._architecture['input_dimension'] += self.problem.params_domain.shape[0]
|
|
|
|
self.error_norm = error_norm
|
|
|
|
if device == 'cuda' and not torch.cuda.is_available():
|
|
raise RuntimeError
|
|
self.device = torch.device(device)
|
|
|
|
self.dtype = dtype
|
|
self.history_loss = {}
|
|
|
|
|
|
self.model = Network(model=model,
|
|
input_variables=problem.input_variables,
|
|
output_variables=problem.output_variables,
|
|
extra_features=extra_features)
|
|
|
|
self.model.to(dtype=self.dtype, device=self.device)
|
|
|
|
self.truth_values = {}
|
|
self.input_pts = {}
|
|
|
|
self.trained_epoch = 0
|
|
|
|
from .writer import Writer
|
|
if writer is None:
|
|
writer = Writer()
|
|
self.writer = writer
|
|
|
|
if not optimizer_kwargs:
|
|
optimizer_kwargs = {}
|
|
optimizer_kwargs['lr'] = lr
|
|
self.optimizer = optimizer(
|
|
self.model.parameters())#, weight_decay=regularizer, **optimizer_kwargs)
|
|
#self._lr_scheduler = lr_scheduler_type(
|
|
# self.optimizer, **lr_scheduler_kwargs)
|
|
|
|
self.batch_size = batch_size
|
|
# self.data_set = PinaDataset(self)
|
|
|
|
@property
|
|
def problem(self):
|
|
""" The problem formulation."""
|
|
return self._problem
|
|
|
|
@problem.setter
|
|
def problem(self, problem):
|
|
"""
|
|
Set the problem formulation."""
|
|
if not isinstance(problem, AbstractProblem):
|
|
raise TypeError
|
|
self._problem = problem
|
|
|
|
def _compute_norm(self, vec):
|
|
"""
|
|
Compute the norm of the `vec` one-dimensional tensor based on the
|
|
`self.error_norm` attribute.
|
|
|
|
.. todo: complete
|
|
|
|
:param torch.Tensor vec: the tensor
|
|
"""
|
|
if isinstance(self.error_norm, int):
|
|
return torch.linalg.vector_norm(vec, ord=self.error_norm, dtype=self.dytpe)
|
|
elif self.error_norm == 'mse':
|
|
return torch.mean(vec.pow(2))
|
|
elif self.error_norm == 'me':
|
|
return torch.mean(torch.abs(vec))
|
|
else:
|
|
raise RuntimeError
|
|
|
|
def save_state(self, filename):
|
|
"""
|
|
Save the state of the model.
|
|
|
|
:param str filename: the filename to save the state to.
|
|
"""
|
|
checkpoint = {
|
|
'epoch': self.trained_epoch,
|
|
'model_state': self.model.state_dict(),
|
|
'optimizer_state': self.optimizer.state_dict(),
|
|
'optimizer_class': self.optimizer.__class__,
|
|
'history': self.history_loss,
|
|
'input_points_dict': self.input_pts,
|
|
}
|
|
|
|
# TODO save also architecture param?
|
|
# if isinstance(self.model, DeepFeedForward):
|
|
# checkpoint['model_class'] = self.model.__class__
|
|
# checkpoint['model_structure'] = {
|
|
# }
|
|
torch.save(checkpoint, filename)
|
|
|
|
def load_state(self, filename):
|
|
"""
|
|
Load the state of the model.
|
|
|
|
:param str filename: the filename to load the state from.
|
|
"""
|
|
|
|
checkpoint = torch.load(filename)
|
|
self.model.load_state_dict(checkpoint['model_state'])
|
|
|
|
self.optimizer = checkpoint['optimizer_class'](self.model.parameters())
|
|
self.optimizer.load_state_dict(checkpoint['optimizer_state'])
|
|
|
|
self.trained_epoch = checkpoint['epoch']
|
|
self.history_loss = checkpoint['history']
|
|
|
|
self.input_pts = checkpoint['input_points_dict']
|
|
|
|
return self
|
|
|
|
def span_pts(self, *args, **kwargs):
|
|
"""
|
|
Generate a set of points to span the `Location` of all the conditions of
|
|
the problem.
|
|
|
|
>>> pinn.span_pts(n=10, mode='grid')
|
|
>>> pinn.span_pts(n=10, mode='grid', location=['bound1'])
|
|
>>> pinn.span_pts(n=10, mode='grid', variables=['x'])
|
|
"""
|
|
|
|
if all(key in kwargs for key in ['n', 'mode']):
|
|
argument = {}
|
|
argument['n'] = kwargs['n']
|
|
argument['mode'] = kwargs['mode']
|
|
argument['variables'] = self.problem.input_variables
|
|
arguments = [argument]
|
|
elif any(key in kwargs for key in ['n', 'mode']) and args:
|
|
raise ValueError("Don't mix args and kwargs")
|
|
elif isinstance(args[0], int) and isinstance(args[1], str):
|
|
argument = {}
|
|
argument['n'] = int(args[0])
|
|
argument['mode'] = args[1]
|
|
argument['variables'] = self.problem.input_variables
|
|
arguments = [argument]
|
|
elif all(isinstance(arg, dict) for arg in args):
|
|
arguments = args
|
|
else:
|
|
raise RuntimeError
|
|
|
|
locations = kwargs.get('locations', 'all')
|
|
|
|
if locations == 'all':
|
|
locations = [condition for condition in self.problem.conditions]
|
|
for location in locations:
|
|
condition = self.problem.conditions[location]
|
|
|
|
samples = tuple(condition.location.sample(
|
|
argument['n'],
|
|
argument['mode'],
|
|
variables=argument['variables'])
|
|
for argument in arguments)
|
|
pts = merge_tensors(samples)
|
|
|
|
# TODO
|
|
# pts = pts.double()
|
|
self.input_pts[location] = pts
|
|
|
|
def _residual_loss(self, input_pts, equation):
|
|
"""
|
|
Compute the residual loss for a given condition.
|
|
|
|
:param torch.Tensor pts: the points to evaluate the residual at.
|
|
:param Equation equation: the equation to evaluate the residual with.
|
|
"""
|
|
|
|
input_pts = input_pts.to(dtype=self.dtype, device=self.device)
|
|
input_pts.requires_grad_(True)
|
|
input_pts.retain_grad()
|
|
|
|
predicted = self.model(input_pts)
|
|
residuals = equation.residual(input_pts, predicted)
|
|
return self._compute_norm(residuals)
|
|
|
|
def _data_loss(self, input_pts, output_pts):
|
|
"""
|
|
Compute the residual loss for a given condition.
|
|
|
|
:param torch.Tensor pts: the points to evaluate the residual at.
|
|
:param Equation equation: the equation to evaluate the residual with.
|
|
"""
|
|
input_pts = input_pts.to(dtype=self.dtype, device=self.device)
|
|
output_pts = output_pts.to(dtype=self.dtype, device=self.device)
|
|
predicted = self.model(input_pts)
|
|
residuals = predicted - output_pts
|
|
return self._compute_norm(residuals)
|
|
|
|
|
|
# def closure(self):
|
|
# """
|
|
# """
|
|
# self.optimizer.zero_grad()
|
|
|
|
# condition_losses = []
|
|
# from torch.utils.data import DataLoader
|
|
# from .utils import MyDataset
|
|
# loader = DataLoader(
|
|
# MyDataset(self.input_pts),
|
|
# batch_size=self.batch_size,
|
|
# num_workers=1
|
|
# )
|
|
# for condition_name in self.problem.conditions:
|
|
# condition = self.problem.conditions[condition_name]
|
|
|
|
# batch_losses = []
|
|
# for batch in data_loader[condition_name]:
|
|
|
|
# if hasattr(condition, 'equation'):
|
|
# loss = self._residual_loss(
|
|
# batch[condition_name], condition.equation)
|
|
# elif hasattr(condition, 'output_points'):
|
|
# loss = self._data_loss(
|
|
# batch[condition_name], condition.output_points)
|
|
|
|
# batch_losses.append(loss * condition.data_weight)
|
|
|
|
# condition_losses.append(sum(batch_losses))
|
|
|
|
# loss = sum(condition_losses)
|
|
# loss.backward()
|
|
# return loss
|
|
|
|
def closure(self):
|
|
"""
|
|
"""
|
|
self.optimizer.zero_grad()
|
|
|
|
losses = []
|
|
for i, batch in enumerate(self.loader):
|
|
|
|
condition_losses = []
|
|
|
|
for condition_name, samples in batch.items():
|
|
|
|
if condition_name not in self.problem.conditions:
|
|
raise RuntimeError('Something wrong happened.')
|
|
|
|
if samples is None or samples.nelement() == 0:
|
|
continue
|
|
|
|
condition = self.problem.conditions[condition_name]
|
|
|
|
if hasattr(condition, 'equation'):
|
|
loss = self._residual_loss(samples, condition.equation)
|
|
elif hasattr(condition, 'output_points'):
|
|
loss = self._data_loss(samples, condition.output_points)
|
|
|
|
condition_losses.append(loss * condition.data_weight)
|
|
|
|
losses.append(sum(condition_losses))
|
|
|
|
loss = sum(losses)
|
|
loss.backward()
|
|
return losses[0]
|
|
|
|
def train(self, stop=100):
|
|
|
|
self.model.train()
|
|
|
|
############################################################
|
|
## TODO: move to problem class
|
|
for condition in list(set(self.problem.conditions.keys()) - set(self.input_pts.keys())):
|
|
self.input_pts[condition] = self.problem.conditions[condition].input_points
|
|
|
|
mydata = self.input_pts
|
|
|
|
self.loader = DummyLoader(mydata)
|
|
|
|
while True:
|
|
|
|
loss = self.optimizer.step(closure=self.closure)
|
|
|
|
self.writer.write_loss_in_loop(self, loss)
|
|
|
|
#self._lr_scheduler.step()
|
|
|
|
if isinstance(stop, int):
|
|
if self.trained_epoch == stop:
|
|
break
|
|
elif isinstance(stop, float):
|
|
if loss.item() < stop:
|
|
break
|
|
|
|
self.trained_epoch += 1
|
|
|
|
self.model.eval() |