Files
PINA/tests/test_model/test_deeponet.py
Dario Coscia be11110bb2 fnn update, pinn torch models, tests update. (#88)
* fnn update, remove labeltensors
* allow custom torch models
* updating tests

---------

Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
Co-authored-by: Dario Coscia <dariocoscia@dhcp-031.eduroam.sissa.it>
2023-11-17 09:51:29 +01:00

32 lines
1.1 KiB
Python

import pytest
import torch
from pina import LabelTensor
from pina.model import DeepONet
from pina.model import FeedForward as FFN
data = torch.rand((20, 3))
input_vars = ['a', 'b', 'c']
output_vars = ['d']
input_ = LabelTensor(data, input_vars)
# TODO
# def test_constructor():
# branch = FFN(input_variables=['a', 'c'], output_variables=20)
# trunk = FFN(input_variables=['b'], output_variables=20)
# onet = DeepONet(nets=[trunk, branch], output_variables=output_vars)
# def test_constructor_fails_when_invalid_inner_layer_size():
# branch = FFN(input_variables=['a', 'c'], output_variables=20)
# trunk = FFN(input_variables=['b'], output_variables=19)
# with pytest.raises(ValueError):
# DeepONet(nets=[trunk, branch], output_variables=output_vars)
# def test_forward():
# branch = FFN(input_variables=['a', 'c'], output_variables=10)
# trunk = FFN(input_variables=['b'], output_variables=10)
# onet = DeepONet(nets=[trunk, branch], output_variables=output_vars)
# output_ = onet(input_)
# assert output_.labels == output_vars