* Operation Interface Enhancement + Clarification - added set notation to all the geometry operations - added a warning to say sample_surface=True doesn't work * minor fix docs * fix operation_interface.py doc --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Dario Coscia <93731561+dario-coscia@users.noreply.github.com>
111 lines
4.2 KiB
Python
111 lines
4.2 KiB
Python
"""Module for Location class."""
|
|
import torch
|
|
from .location import Location
|
|
from ..utils import check_consistency
|
|
from ..label_tensor import LabelTensor
|
|
import random
|
|
from .operation_interface import OperationInterface
|
|
|
|
|
|
class Exclusion(OperationInterface):
|
|
""" PINA implementation of Exclusion of Domains."""
|
|
|
|
def __init__(self, geometries):
|
|
"""
|
|
PINA implementation of Exclusion of Domains.
|
|
Given two sets :math:`A` and :math:`B` then the
|
|
domain difference is defined as:
|
|
|
|
..:math:
|
|
A \setminus B = \{x \mid x \in A \text{ and } x \in B\ \text{ and } x \not\in (A \text{ or } B)},
|
|
|
|
with :math:`x` a point in :math:`\mathbb{R}^N` and :math:`N`
|
|
the dimension of the geometry space.
|
|
|
|
:param list geometries: A list of geometries from 'pina.geometry'
|
|
such as 'EllipsoidDomain' or 'CartesianDomain'.
|
|
|
|
:Example:
|
|
# Create two ellipsoid domains
|
|
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
|
|
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
|
|
|
|
# Create a Exclusion of the ellipsoid domains
|
|
>>> exclusion = Exclusion([ellipsoid1, ellipsoid2])
|
|
"""
|
|
super().__init__(geometries)
|
|
|
|
def is_inside(self, point, check_border=False):
|
|
"""Check if a point is inside the Exclusion domain.
|
|
|
|
:param point: Point to be checked.
|
|
:type point: torch.Tensor
|
|
:param bool check_border: If True, the border is considered inside.
|
|
:return: True if the point is inside the Exclusion domain, False otherwise.
|
|
:rtype: bool
|
|
"""
|
|
flag = 0
|
|
for geometry in self.geometries:
|
|
if geometry.is_inside(point, check_border):
|
|
flag += 1
|
|
return flag == 1
|
|
|
|
def sample(self, n, mode='random', variables='all'):
|
|
"""Sample routine for exclusion domain.
|
|
|
|
:param n: Number of points to sample in the shape.
|
|
:type n: int
|
|
:param mode: Mode for sampling, defaults to 'random'.
|
|
Available modes include: random sampling, 'random'.
|
|
:type mode: str, optional
|
|
:param variables: pinn variable to be sampled, defaults to 'all'.
|
|
:type variables: str or list[str], optional
|
|
|
|
:Example:
|
|
# Create two Cartesian domains
|
|
>>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]})
|
|
>>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]})
|
|
|
|
# Create a Exclusion of the ellipsoid domains
|
|
>>> Exclusion = Exclusion([cartesian1, cartesian2])
|
|
|
|
>>> Exclusion.sample(n=5)
|
|
LabelTensor([[2.4187, 1.5792],
|
|
[2.7456, 2.3868],
|
|
[2.3830, 1.7037],
|
|
[0.8636, 1.8453],
|
|
[0.1978, 0.3526]])
|
|
|
|
>>> len(Exclusion.sample(n=5)
|
|
5
|
|
|
|
"""
|
|
if mode != 'random':
|
|
raise NotImplementedError(
|
|
f'{mode} is not a valid mode for sampling.')
|
|
|
|
sampled = []
|
|
|
|
# calculate the number of points to sample for each geometry and the remainder.
|
|
remainder = n % len(self.geometries)
|
|
num_points = n // len(self.geometries)
|
|
|
|
# sample the points
|
|
# NB. geometries as shuffled since if we sample
|
|
# multiple times just one point, we would end
|
|
# up sampling only from the first geometry.
|
|
iter_ = random.sample(self.geometries, len(self.geometries))
|
|
for i, geometry in enumerate(iter_):
|
|
sampled_points = []
|
|
# int(i < remainder) is one only if we have a remainder
|
|
# different than zero. Notice that len(geometries) is
|
|
# always smaller than remaider.
|
|
# makes sure point is uniquely inside 1 shape.
|
|
while len(sampled_points) < (num_points + int(i < remainder)):
|
|
sample = geometry.sample(1, mode, variables)
|
|
# if not self.is_inside(sample) --> will be the intersection
|
|
if self.is_inside(sample):
|
|
sampled_points.append(sample)
|
|
sampled += sampled_points
|
|
|
|
return LabelTensor(torch.cat(sampled), labels=self.variables) |