154 lines
5.2 KiB
Python
154 lines
5.2 KiB
Python
"""Module for the Adaptive Function interface."""
|
|
|
|
from abc import ABCMeta
|
|
import torch
|
|
from ..utils import check_consistency, is_function
|
|
|
|
|
|
class AdaptiveActivationFunctionInterface(torch.nn.Module, metaclass=ABCMeta):
|
|
r"""
|
|
The
|
|
:class:`~pina.adaptive_function.adaptive_func_interface.\
|
|
AdaptiveActivationFunctionInterface`
|
|
class makes a :class:`torch.nn.Module` activation function into an adaptive
|
|
trainable activation function. If one wants to create an adpative activation
|
|
function, this class must be use as base class.
|
|
|
|
Given a function :math:`f:\mathbb{R}^n\rightarrow\mathbb{R}^m`, the adaptive
|
|
function :math:`f_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^m`
|
|
is defined as:
|
|
|
|
.. math::
|
|
f_{\text{adaptive}}(\mathbf{x}) = \alpha\,f(\beta\mathbf{x}+\gamma),
|
|
|
|
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters.
|
|
|
|
.. seealso::
|
|
|
|
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
|
*A continuum among logarithmic, linear, and exponential functions,
|
|
and its potential to improve generalization in neural networks.*
|
|
2015 7th international joint conference on knowledge discovery,
|
|
knowledge engineering and knowledge management (IC3K).
|
|
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
|
<https://arxiv.org/abs/1602.01321>`_.
|
|
|
|
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
|
activation functions accelerate convergence in deep and
|
|
physics-informed neural networks*. Journal of
|
|
Computational Physics 404 (2020): 109136.
|
|
DOI: `JCP 10.1016
|
|
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
|
"""
|
|
|
|
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
|
|
"""
|
|
Initializes the Adaptive Function.
|
|
|
|
:param float | complex alpha: Scaling parameter alpha.
|
|
Defaults to ``None``. When ``None`` is passed,
|
|
the variable is initialized to 1.
|
|
:param float | complex beta: Scaling parameter beta.
|
|
Defaults to ``None``. When ``None`` is passed,
|
|
the variable is initialized to 1.
|
|
:param float | complex gamma: Shifting parameter gamma.
|
|
Defaults to ``None``. When ``None`` is passed,
|
|
the variable is initialized to 1.
|
|
:param list fixed: List of parameters to fix during training,
|
|
i.e. not optimized (``requires_grad`` set to ``False``).
|
|
Options are ``alpha``, ``beta``, ``gamma``. Defaults to None.
|
|
"""
|
|
super().__init__()
|
|
|
|
# see if there are fixed variables
|
|
if fixed is not None:
|
|
check_consistency(fixed, str)
|
|
if not all(key in ["alpha", "beta", "gamma"] for key in fixed):
|
|
raise TypeError(
|
|
"Fixed keys must be in [`alpha`, `beta`, `gamma`]."
|
|
)
|
|
|
|
# initialize alpha, beta, gamma if they are None
|
|
if alpha is None:
|
|
alpha = 1.0
|
|
if beta is None:
|
|
beta = 1.0
|
|
if gamma is None:
|
|
gamma = 0.0
|
|
|
|
# checking consistency
|
|
check_consistency(alpha, (float, complex))
|
|
check_consistency(beta, (float, complex))
|
|
check_consistency(gamma, (float, complex))
|
|
|
|
# registering as tensors
|
|
alpha = torch.tensor(alpha, requires_grad=False)
|
|
beta = torch.tensor(beta, requires_grad=False)
|
|
gamma = torch.tensor(gamma, requires_grad=False)
|
|
|
|
# setting not fixed variables as torch.nn.Parameter with gradient
|
|
# registering the buffer for the one which are fixed, buffers by
|
|
# default are saved alongside trainable parameters
|
|
if "alpha" not in (fixed or []):
|
|
self._alpha = torch.nn.Parameter(alpha, requires_grad=True)
|
|
else:
|
|
self.register_buffer("alpha", alpha)
|
|
|
|
if "beta" not in (fixed or []):
|
|
self._beta = torch.nn.Parameter(beta, requires_grad=True)
|
|
else:
|
|
self.register_buffer("beta", beta)
|
|
|
|
if "gamma" not in (fixed or []):
|
|
self._gamma = torch.nn.Parameter(gamma, requires_grad=True)
|
|
else:
|
|
self.register_buffer("gamma", gamma)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Define the computation performed at every call.
|
|
The function to the input elementwise.
|
|
|
|
:param x: The input tensor to evaluate the activation function.
|
|
:type x: torch.Tensor | LabelTensor
|
|
"""
|
|
return self.alpha * (self._func(self.beta * x + self.gamma))
|
|
|
|
@property
|
|
def alpha(self):
|
|
"""
|
|
The alpha variable.
|
|
"""
|
|
return self._alpha
|
|
|
|
@property
|
|
def beta(self):
|
|
"""
|
|
The beta variable.
|
|
"""
|
|
return self._beta
|
|
|
|
@property
|
|
def gamma(self):
|
|
"""
|
|
The gamma variable.
|
|
"""
|
|
return self._gamma
|
|
|
|
@property
|
|
def func(self):
|
|
"""
|
|
The callable activation function.
|
|
"""
|
|
return self._func
|
|
|
|
@func.setter
|
|
def func(self, value):
|
|
"""
|
|
Set the activation function.
|
|
"""
|
|
if not is_function(value):
|
|
raise TypeError("The function must be callable.")
|
|
self._func = value
|
|
return self._func
|