Files
PINA/examples/run_burgers.py
2022-02-11 16:44:37 +01:00

60 lines
1.7 KiB
Python

import argparse
import torch
from torch.nn import Softplus
from pina import PINN, Plotter
from pina.model import FeedForward
from problems.burgers import Burgers1D
class myFeature(torch.nn.Module):
"""
Feature: sin(pi*x)
"""
def __init__(self, idx):
super(myFeature, self).__init__()
self.idx = idx
def forward(self, x):
return torch.sin(torch.pi * x[:, self.idx])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-s", "-save", action="store_true")
group.add_argument("-l", "-load", action="store_true")
parser.add_argument("id_run", help="number of run", type=int)
parser.add_argument("features", help="extra features", type=int)
args = parser.parse_args()
feat = [myFeature(0)] if args.features else []
burgers_problem = Burgers1D()
model = FeedForward(
layers=[30, 20, 10, 5],
output_variables=burgers_problem.output_variables,
input_variables=burgers_problem.input_variables,
func=Softplus,
extra_features=feat
)
pinn = PINN(
burgers_problem,
model,
lr=0.006,
error_norm='mse',
regularizer=0,
lr_accelerate=None)
if args.s:
pinn.span_pts(2000, 'latin', ['D'])
pinn.span_pts(150, 'random', ['gamma1', 'gamma2', 't0'])
pinn.train(5000, 100)
pinn.save_state('pina.burger.{}.{}'.format(args.id_run, args.features))
else:
pinn.load_state('pina.burger.{}.{}'.format(args.id_run, args.features))
plotter = Plotter()
plotter.plot(pinn)