Files
PINA/tests/test_data/test_tensor_dataset.py
FilippoOlivo 8440a672a7 fix tests
2025-11-13 17:03:31 +01:00

87 lines
3.0 KiB
Python

# import torch
# import pytest
# from pina.data.dataset import PinaDatasetFactory, PinaTensorDataset
# input_tensor = torch.rand((100, 10))
# output_tensor = torch.rand((100, 2))
# input_tensor_2 = torch.rand((50, 10))
# output_tensor_2 = torch.rand((50, 2))
# conditions_dict_single = {
# "data": {
# "input": input_tensor,
# "target": output_tensor,
# }
# }
# conditions_dict_single_multi = {
# "data_1": {
# "input": input_tensor,
# "target": output_tensor,
# },
# "data_2": {
# "input": input_tensor_2,
# "target": output_tensor_2,
# },
# }
# max_conditions_lengths_single = {"data": 100}
# max_conditions_lengths_multi = {"data_1": 100, "data_2": 50}
# @pytest.mark.parametrize(
# "conditions_dict, max_conditions_lengths",
# [
# (conditions_dict_single, max_conditions_lengths_single),
# (conditions_dict_single_multi, max_conditions_lengths_multi),
# ],
# )
# def test_constructor_tensor(conditions_dict, max_conditions_lengths):
# dataset = PinaDatasetFactory(
# conditions_dict,
# max_conditions_lengths=max_conditions_lengths,
# automatic_batching=True,
# )
# assert isinstance(dataset, PinaTensorDataset)
# def test_getitem_single():
# dataset = PinaDatasetFactory(
# conditions_dict_single,
# max_conditions_lengths=max_conditions_lengths_single,
# automatic_batching=False,
# )
# tensors = dataset.fetch_from_idx_list([i for i in range(70)])
# assert isinstance(tensors, dict)
# assert list(tensors.keys()) == ["data"]
# assert sorted(list(tensors["data"].keys())) == ["input", "target"]
# assert isinstance(tensors["data"]["input"], torch.Tensor)
# assert tensors["data"]["input"].shape == torch.Size((70, 10))
# assert isinstance(tensors["data"]["target"], torch.Tensor)
# assert tensors["data"]["target"].shape == torch.Size((70, 2))
# def test_getitem_multi():
# dataset = PinaDatasetFactory(
# conditions_dict_single_multi,
# max_conditions_lengths=max_conditions_lengths_multi,
# automatic_batching=False,
# )
# tensors = dataset.fetch_from_idx_list([i for i in range(70)])
# assert isinstance(tensors, dict)
# assert list(tensors.keys()) == ["data_1", "data_2"]
# assert sorted(list(tensors["data_1"].keys())) == ["input", "target"]
# assert isinstance(tensors["data_1"]["input"], torch.Tensor)
# assert tensors["data_1"]["input"].shape == torch.Size((70, 10))
# assert isinstance(tensors["data_1"]["target"], torch.Tensor)
# assert tensors["data_1"]["target"].shape == torch.Size((70, 2))
# assert sorted(list(tensors["data_2"].keys())) == ["input", "target"]
# assert isinstance(tensors["data_2"]["input"], torch.Tensor)
# assert tensors["data_2"]["input"].shape == torch.Size((50, 10))
# assert isinstance(tensors["data_2"]["target"], torch.Tensor)
# assert tensors["data_2"]["target"].shape == torch.Size((50, 2))