Files
PINA/tests/test_data/test_tensor_dataset.py
Filippo Olivo 4177bfbb50 Fix Codacy Warnings (#477)
---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
2025-03-19 17:48:18 +01:00

87 lines
2.8 KiB
Python

import torch
import pytest
from pina.data.dataset import PinaDatasetFactory, PinaTensorDataset
input_tensor = torch.rand((100, 10))
output_tensor = torch.rand((100, 2))
input_tensor_2 = torch.rand((50, 10))
output_tensor_2 = torch.rand((50, 2))
conditions_dict_single = {
"data": {
"input": input_tensor,
"target": output_tensor,
}
}
conditions_dict_single_multi = {
"data_1": {
"input": input_tensor,
"target": output_tensor,
},
"data_2": {
"input": input_tensor_2,
"target": output_tensor_2,
},
}
max_conditions_lengths_single = {"data": 100}
max_conditions_lengths_multi = {"data_1": 100, "data_2": 50}
@pytest.mark.parametrize(
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_single_multi, max_conditions_lengths_multi),
],
)
def test_constructor_tensor(conditions_dict, max_conditions_lengths):
dataset = PinaDatasetFactory(
conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True,
)
assert isinstance(dataset, PinaTensorDataset)
def test_getitem_single():
dataset = PinaDatasetFactory(
conditions_dict_single,
max_conditions_lengths=max_conditions_lengths_single,
automatic_batching=False,
)
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ["data"]
assert sorted(list(tensors["data"].keys())) == ["input", "target"]
assert isinstance(tensors["data"]["input"], torch.Tensor)
assert tensors["data"]["input"].shape == torch.Size((70, 10))
assert isinstance(tensors["data"]["target"], torch.Tensor)
assert tensors["data"]["target"].shape == torch.Size((70, 2))
def test_getitem_multi():
dataset = PinaDatasetFactory(
conditions_dict_single_multi,
max_conditions_lengths=max_conditions_lengths_multi,
automatic_batching=False,
)
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ["data_1", "data_2"]
assert sorted(list(tensors["data_1"].keys())) == ["input", "target"]
assert isinstance(tensors["data_1"]["input"], torch.Tensor)
assert tensors["data_1"]["input"].shape == torch.Size((70, 10))
assert isinstance(tensors["data_1"]["target"], torch.Tensor)
assert tensors["data_1"]["target"].shape == torch.Size((70, 2))
assert sorted(list(tensors["data_2"].keys())) == ["input", "target"]
assert isinstance(tensors["data_2"]["input"], torch.Tensor)
assert tensors["data_2"]["input"].shape == torch.Size((50, 10))
assert isinstance(tensors["data_2"]["target"], torch.Tensor)
assert tensors["data_2"]["target"].shape == torch.Size((50, 2))