Files
PINA/tests/test_label_tensor/test_label_tensor.py
Filippo Olivo 4177bfbb50 Fix Codacy Warnings (#477)
---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
2025-03-19 17:48:18 +01:00

281 lines
9.9 KiB
Python

import torch
import pytest
from pina.label_tensor import LabelTensor
data = torch.rand((20, 3))
labels_column = {1: {"name": "space", "dof": ["x", "y", "z"]}}
labels_row = {0: {"name": "samples", "dof": range(20)}}
labels_list = ["x", "y", "z"]
labels_all = labels_column.copy()
labels_all.update(labels_row)
@pytest.mark.parametrize(
"labels", [labels_column, labels_row, labels_all, labels_list]
)
def test_constructor(labels):
print(LabelTensor(data, labels))
def test_wrong_constructor():
with pytest.raises(ValueError):
LabelTensor(data, ["a", "b"])
@pytest.mark.parametrize("labels", [labels_column, labels_all])
@pytest.mark.parametrize("labels_te", ["z", ["z"], {"space": ["z"]}])
def test_extract_column(labels, labels_te):
tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te)
assert new.ndim == tensor.ndim
assert new.shape[1] == 1
assert new.shape[0] == 20
assert torch.all(torch.isclose(data[:, 2].reshape(-1, 1), new))
@pytest.mark.parametrize("labels", [labels_row, labels_all])
@pytest.mark.parametrize("labels_te", [{"samples": [2]}])
def test_extract_row(labels, labels_te):
tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te)
assert new.ndim == tensor.ndim
assert new.shape[1] == 3
assert new.shape[0] == 1
assert torch.all(torch.isclose(data[2].reshape(1, -1), new))
@pytest.mark.parametrize(
"labels_te",
[{"samples": [2], "space": ["z"]}, {"space": "z", "samples": 2}],
)
def test_extract_2D(labels_te):
labels = labels_all
tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te)
assert new.ndim == tensor.ndim
assert new.shape[1] == 1
assert new.shape[0] == 1
assert torch.all(torch.isclose(data[2, 2].reshape(1, 1), new))
def test_extract_3D():
data = torch.rand(20, 3, 4)
labels = {
1: {"name": "space", "dof": ["x", "y", "z"]},
2: {"name": "time", "dof": range(4)},
}
labels_te = {"space": ["x", "z"], "time": range(1, 4)}
tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te)
tensor2 = LabelTensor(data, labels)
assert new.ndim == tensor.ndim
assert new.shape[0] == 20
assert new.shape[1] == 2
assert new.shape[2] == 3
assert torch.all(torch.isclose(data[:, 0::2, 1:4].reshape(20, 2, 3), new))
assert tensor2.ndim == tensor.ndim
assert tensor2.shape == tensor.shape
assert tensor.full_labels == tensor2.full_labels
assert new.shape != tensor.shape
def test_concatenation_3D():
data_1 = torch.rand(20, 3, 4)
labels_1 = ["x", "y", "z", "w"]
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(50, 3, 4)
labels_2 = ["x", "y", "z", "w"]
lt2 = LabelTensor(data_2, labels_2)
lt_cat = LabelTensor.cat([lt1, lt2])
assert lt_cat.shape == (70, 3, 4)
assert lt_cat.full_labels[0]["dof"] == range(70)
assert lt_cat.full_labels[1]["dof"] == range(3)
assert lt_cat.full_labels[2]["dof"] == ["x", "y", "z", "w"]
data_1 = torch.rand(20, 3, 4)
labels_1 = ["x", "y", "z", "w"]
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 2, 4)
labels_2 = ["x", "y", "z", "w"]
lt2 = LabelTensor(data_2, labels_2)
lt_cat = LabelTensor.cat([lt1, lt2], dim=1)
assert lt_cat.shape == (20, 5, 4)
assert lt_cat.full_labels[0]["dof"] == range(20)
assert lt_cat.full_labels[1]["dof"] == range(5)
assert lt_cat.full_labels[2]["dof"] == ["x", "y", "z", "w"]
data_1 = torch.rand(20, 3, 2)
labels_1 = ["x", "y"]
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 3, 3)
labels_2 = ["z", "w", "a"]
lt2 = LabelTensor(data_2, labels_2)
lt_cat = LabelTensor.cat([lt1, lt2], dim=2)
assert lt_cat.shape == (20, 3, 5)
assert lt_cat.full_labels[2]["dof"] == ["x", "y", "z", "w", "a"]
assert lt_cat.full_labels[0]["dof"] == range(20)
assert lt_cat.full_labels[1]["dof"] == range(3)
data_1 = torch.rand(20, 2, 4)
labels_1 = ["x", "y", "z", "w"]
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 3, 4)
labels_2 = ["x", "y", "z", "w"]
lt2 = LabelTensor(data_2, labels_2)
with pytest.raises(RuntimeError):
LabelTensor.cat([lt1, lt2], dim=2)
data_1 = torch.rand(20, 3, 2)
labels_1 = ["x", "y"]
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 3, 3)
labels_2 = ["z", "w", "a"]
lt2 = LabelTensor(data_2, labels_2)
lt_cat = LabelTensor.cat([lt1, lt2], dim=2)
assert lt_cat.shape == (20, 3, 5)
assert lt_cat.full_labels[2]["dof"] == ["x", "y", "z", "w", "a"]
assert lt_cat.full_labels[0]["dof"] == range(20)
assert lt_cat.full_labels[1]["dof"] == range(3)
def test_summation():
lt1 = LabelTensor(torch.ones(20, 3), labels_all)
lt2 = LabelTensor(torch.ones(30, 3), ["x", "y", "z"])
with pytest.raises(RuntimeError):
LabelTensor.summation([lt1, lt2])
lt1 = LabelTensor(torch.ones(20, 3), labels_all)
lt2 = LabelTensor(torch.ones(20, 3), labels_all)
lt_sum = LabelTensor.summation([lt1, lt2])
assert lt_sum.ndim == lt_sum.ndim
assert lt_sum.shape[0] == 20
assert lt_sum.shape[1] == 3
assert lt_sum.full_labels[0] == labels_all[0]
assert lt_sum.labels == ["x+x", "y+y", "z+z"]
assert torch.eq(lt_sum.tensor, torch.ones(20, 3) * 2).all()
lt1 = LabelTensor(torch.ones(20, 3), labels_all)
lt2 = LabelTensor(torch.ones(20, 3), labels_all)
lt3 = LabelTensor(torch.zeros(20, 3), labels_all)
lt_sum = LabelTensor.summation([lt1, lt2, lt3])
assert lt_sum.ndim == lt_sum.ndim
assert lt_sum.shape[0] == 20
assert lt_sum.shape[1] == 3
assert lt_sum.full_labels[0] == labels_all[0]
assert lt_sum.labels == ["x+x+x", "y+y+y", "z+z+z"]
assert torch.eq(lt_sum.tensor, torch.ones(20, 3) * 2).all()
def test_append_3D():
data_1 = torch.rand(20, 3, 2)
labels_1 = ["x", "y"]
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 3, 2)
labels_2 = ["z", "w"]
lt2 = LabelTensor(data_2, labels_2)
lt1 = lt1.append(lt2)
assert lt1.shape == (20, 3, 4)
assert lt1.full_labels[0]["dof"] == range(20)
assert lt1.full_labels[1]["dof"] == range(3)
assert lt1.full_labels[2]["dof"] == ["x", "y", "z", "w"]
def test_append_2D():
data_1 = torch.rand(20, 2)
labels_1 = ["x", "y"]
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 2)
labels_2 = ["z", "w"]
lt2 = LabelTensor(data_2, labels_2)
lt1 = lt1.append(lt2, mode="cross")
assert lt1.shape == (400, 4)
assert lt1.full_labels[0]["dof"] == range(400)
assert lt1.full_labels[1]["dof"] == ["x", "y", "z", "w"]
def test_vstack_3D():
data_1 = torch.rand(20, 3, 2)
labels_1 = {
1: {"dof": ["a", "b", "c"], "name": "first"},
2: {"dof": ["x", "y"], "name": "second"},
}
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 3, 2)
labels_1 = {
1: {"dof": ["a", "b", "c"], "name": "first"},
2: {"dof": ["x", "y"], "name": "second"},
}
lt2 = LabelTensor(data_2, labels_1)
lt_stacked = LabelTensor.vstack([lt1, lt2])
assert lt_stacked.shape == (40, 3, 2)
assert lt_stacked.full_labels[0]["dof"] == range(40)
assert lt_stacked.full_labels[1]["dof"] == ["a", "b", "c"]
assert lt_stacked.full_labels[2]["dof"] == ["x", "y"]
assert lt_stacked.full_labels[1]["name"] == "first"
assert lt_stacked.full_labels[2]["name"] == "second"
def test_vstack_2D():
data_1 = torch.rand(20, 2)
labels_1 = {1: {"dof": ["x", "y"], "name": "second"}}
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 2)
labels_1 = {1: {"dof": ["x", "y"], "name": "second"}}
lt2 = LabelTensor(data_2, labels_1)
lt_stacked = LabelTensor.vstack([lt1, lt2])
assert lt_stacked.shape == (40, 2)
assert lt_stacked.full_labels[0]["dof"] == range(40)
assert lt_stacked.full_labels[1]["dof"] == ["x", "y"]
assert lt_stacked.full_labels[0]["name"] == 0
assert lt_stacked.full_labels[1]["name"] == "second"
def test_sorting():
data = torch.ones(20, 5)
data[:, 0] = data[:, 0] * 4
data[:, 1] = data[:, 1] * 2
data[:, 2] = data[:, 2]
data[:, 3] = data[:, 3] * 5
data[:, 4] = data[:, 4] * 3
labels = ["d", "b", "a", "e", "c"]
lt_data = LabelTensor(data, labels)
lt_sorted = LabelTensor.sort_labels(lt_data)
assert lt_sorted.shape == (20, 5)
assert lt_sorted.labels == ["a", "b", "c", "d", "e"]
assert torch.eq(lt_sorted.tensor[:, 0], torch.ones(20) * 1).all()
assert torch.eq(lt_sorted.tensor[:, 1], torch.ones(20) * 2).all()
assert torch.eq(lt_sorted.tensor[:, 2], torch.ones(20) * 3).all()
assert torch.eq(lt_sorted.tensor[:, 3], torch.ones(20) * 4).all()
assert torch.eq(lt_sorted.tensor[:, 4], torch.ones(20) * 5).all()
data = torch.ones(20, 4, 5)
data[:, 0, :] = data[:, 0] * 4
data[:, 1, :] = data[:, 1] * 2
data[:, 2, :] = data[:, 2]
data[:, 3, :] = data[:, 3] * 3
labels = {1: {"dof": ["d", "b", "a", "c"], "name": 1}}
lt_data = LabelTensor(data, labels)
lt_sorted = LabelTensor.sort_labels(lt_data, dim=1)
assert lt_sorted.shape == (20, 4, 5)
assert lt_sorted.full_labels[1]["dof"] == ["a", "b", "c", "d"]
assert torch.eq(lt_sorted.tensor[:, 0, :], torch.ones(20, 5) * 1).all()
assert torch.eq(lt_sorted.tensor[:, 1, :], torch.ones(20, 5) * 2).all()
assert torch.eq(lt_sorted.tensor[:, 2, :], torch.ones(20, 5) * 3).all()
assert torch.eq(lt_sorted.tensor[:, 3, :], torch.ones(20, 5) * 4).all()
@pytest.mark.parametrize(
"labels",
[
[f"s{i}" for i in range(10)],
{0: {"dof": ["a", "b", "c"]}, 1: {"dof": [f"s{i}" for i in range(10)]}},
],
)
def test_cat_bool(labels):
out = torch.randn((3, 10))
out = LabelTensor(out, labels)
selected = out[torch.tensor([True, True, False])]
assert selected.shape == (2, 10)
assert selected.stored_labels[1]["dof"] == [f"s{i}" for i in range(10)]
if isinstance(labels, dict):
assert selected.stored_labels[0]["dof"] == ["a", "b"]