Files
PINA/tests/test_solver/test_pinn.py
Dario Coscia 1bb3c125ac Refactoring solvers (#541)
* Refactoring solvers

* Simplify logic compile
* Improve and update doc
* Create SupervisedSolverInterface
* Specialize SupervisedSolver and ReducedOrderModelSolver
* Create EnsembleSolverInterface + EnsembleSupervisedSolver
* Create tests ensemble solvers

* formatter

* codacy

* fix issues + speedup test
2025-04-17 10:48:32 +02:00

151 lines
4.4 KiB
Python

import pytest
import torch
from pina import LabelTensor, Condition
from pina.model import FeedForward
from pina.trainer import Trainer
from pina.solver import PINN
from pina.condition import (
InputTargetCondition,
InputEquationCondition,
DomainEquationCondition,
)
from pina.problem.zoo import (
Poisson2DSquareProblem as Poisson,
InversePoisson2DSquareProblem as InversePoisson,
)
from torch._dynamo.eval_frame import OptimizedModule
# define problems
problem = Poisson()
problem.discretise_domain(10)
inverse_problem = InversePoisson()
inverse_problem.discretise_domain(10)
# reduce the number of data points to speed up testing
data_condition = inverse_problem.conditions["data"]
data_condition.input = data_condition.input[:10]
data_condition.target = data_condition.target[:10]
# add input-output condition to test supervised learning
input_pts = torch.rand(10, len(problem.input_variables))
input_pts = LabelTensor(input_pts, problem.input_variables)
output_pts = torch.rand(10, len(problem.output_variables))
output_pts = LabelTensor(output_pts, problem.output_variables)
problem.conditions["data"] = Condition(input=input_pts, target=output_pts)
# define model
model = FeedForward(len(problem.input_variables), len(problem.output_variables))
@pytest.mark.parametrize("problem", [problem, inverse_problem])
def test_constructor(problem):
solver = PINN(problem=problem, model=model)
assert solver.accepted_conditions_types == (
InputTargetCondition,
InputEquationCondition,
DomainEquationCondition,
)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_train(problem, batch_size, compile):
solver = PINN(model=model, problem=problem)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=batch_size,
train_size=1.0,
val_size=0.0,
test_size=0.0,
compile=compile,
)
trainer.train()
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_validation(problem, batch_size, compile):
solver = PINN(model=model, problem=problem)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=batch_size,
train_size=0.9,
val_size=0.1,
test_size=0.0,
compile=compile,
)
trainer.train()
if trainer.compile:
assert isinstance(solver.model, OptimizedModule)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_test(problem, batch_size, compile):
solver = PINN(model=model, problem=problem)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=batch_size,
train_size=0.7,
val_size=0.2,
test_size=0.1,
compile=compile,
)
trainer.test()
@pytest.mark.parametrize("problem", [problem, inverse_problem])
def test_train_load_restore(problem):
dir = "tests/test_solver/tmp"
problem = problem
solver = PINN(model=model, problem=problem)
trainer = Trainer(
solver=solver,
max_epochs=5,
accelerator="cpu",
batch_size=None,
train_size=0.7,
val_size=0.2,
test_size=0.1,
default_root_dir=dir,
)
trainer.train()
# restore
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator="cpu")
new_trainer.train(
ckpt_path=f"{dir}/lightning_logs/version_0/checkpoints/"
+ "epoch=4-step=5.ckpt"
)
# loading
new_solver = PINN.load_from_checkpoint(
f"{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt",
problem=problem,
model=model,
)
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
assert new_solver.forward(test_pts).shape == (20, 1)
assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
torch.testing.assert_close(
new_solver.forward(test_pts), solver.forward(test_pts)
)
# rm directories
import shutil
shutil.rmtree("tests/test_solver/tmp")