Files
PINA/pina/utils.py
2025-04-17 10:48:31 +02:00

192 lines
5.9 KiB
Python

"""Module for utility functions."""
import types
from functools import reduce
import torch
from .label_tensor import LabelTensor
# Codacy error unused parameters
def custom_warning_format(
message, category, filename, lineno, file=None, line=None
):
"""
Custom warning formatting function.
:param str message: The warning message.
:param Warning category: The warning category.
:param str filename: The filename where the warning is raised.
:param int lineno: The line number where the warning is raised.
:param str file: The file object where the warning is raised.
Default is None.
:param int line: The line where the warning is raised.
:return: The formatted warning message.
:rtype: str
"""
return f"{filename}: {category.__name__}: {message}\n"
def check_consistency(object_, object_instance, subclass=False):
"""
Check if an object maintains inheritance consistency.
This function checks whether a given object is an instance of a specified
class or, if ``subclass=True``, whether it is a subclass of the specified
class.
:param object: The object to check.
:type object: Iterable | Object
:param Object object_instance: The expected parent class.
:param bool subclass: If True, checks whether ``object_`` is a subclass
of ``object_instance`` instead of an instance. Default is ``False``.
:raises ValueError: If ``object_`` does not inherit from ``object_instance``
as expected.
"""
if not isinstance(object_, (list, set, tuple)):
object_ = [object_]
for obj in object_:
try:
if not subclass:
assert isinstance(obj, object_instance)
else:
assert issubclass(obj, object_instance)
except AssertionError as e:
raise ValueError(
f"{type(obj).__name__} must be {object_instance}."
) from e
def labelize_forward(forward, input_variables, output_variables):
"""
Decorator to enable or disable the use of
:class:`~pina.label_tensor.LabelTensor` during the forward pass.
:param Callable forward: The forward function of a :class:`torch.nn.Module`.
:param list[str] input_variables: The names of the input variables of a
:class:`~pina.problem.abstract_problem.AbstractProblem`.
:param list[str] output_variables: The names of the output variables of a
:class:`~pina.problem.abstract_problem.AbstractProblem`.
:return: The decorated forward function.
:rtype: Callable
"""
def wrapper(x):
"""
Decorated forward function.
:param LabelTensor x: The labelized input of the forward pass of an
instance of :class:`torch.nn.Module`.
:return: The labelized output of the forward pass of an instance of
:class:`torch.nn.Module`.
:rtype: LabelTensor
"""
x = x.extract(input_variables)
output = forward(x)
# keep it like this, directly using LabelTensor(...) raises errors
# when compiling the code
output = output.as_subclass(LabelTensor)
output.labels = output_variables
return output
return wrapper
def merge_tensors(tensors):
"""
Merge a list of :class:`~pina.label_tensor.LabelTensor` instances into a
single :class:`~pina.label_tensor.LabelTensor` tensor, by applying
iteratively the cartesian product.
:param list[LabelTensor] tensors: The list of tensors to merge.
:raises ValueError: If the list of tensors is empty.
:return: The merged tensor.
:rtype: LabelTensor
"""
if tensors:
return reduce(merge_two_tensors, tensors[1:], tensors[0])
raise ValueError("Expected at least one tensor")
def merge_two_tensors(tensor1, tensor2):
"""
Merge two :class:`~pina.label_tensor.LabelTensor` instances into a single
:class:`~pina.label_tensor.LabelTensor` tensor, by applying the cartesian
product.
:param LabelTensor tensor1: The first tensor to merge.
:param LabelTensor tensor2: The second tensor to merge.
:return: The merged tensor.
:rtype: LabelTensor
"""
n1 = tensor1.shape[0]
n2 = tensor2.shape[0]
tensor1 = LabelTensor(tensor1.repeat(n2, 1), labels=tensor1.labels)
tensor2 = LabelTensor(
tensor2.repeat_interleave(n1, dim=0), labels=tensor2.labels
)
return tensor1.append(tensor2)
def torch_lhs(n, dim):
"""
The Latin Hypercube Sampling torch routine, sampling in :math:`[0, 1)`$.
:param int n: The number of points to sample.
:param int dim: The number of dimensions of the sampling space.
:raises TypeError: If `n` or `dim` are not integers.
:raises ValueError: If `dim` is less than 1.
:return: The sampled points.
:rtype: torch.tensor
"""
if not isinstance(n, int):
raise TypeError("number of point n must be int")
if not isinstance(dim, int):
raise TypeError("dim must be int")
if dim < 1:
raise ValueError("dim must be greater than one")
samples = torch.rand(size=(n, dim))
perms = torch.tile(torch.arange(1, n + 1), (dim, 1))
for row in range(dim):
idx_perm = torch.randperm(perms.shape[-1])
perms[row, :] = perms[row, idx_perm]
perms = perms.T
samples = (perms - samples) / n
return samples
def is_function(f):
"""
Check if the given object is a function or a lambda.
:param Object f: The object to be checked.
:return: ``True`` if ``f`` is a function, ``False`` otherwise.
:rtype: bool
"""
return isinstance(f, (types.FunctionType, types.LambdaType))
def chebyshev_roots(n):
"""
Compute the roots of the Chebyshev polynomial of degree ``n``.
:param int n: The number of roots to return.
:return: The roots of the Chebyshev polynomials.
:rtype: torch.Tensor
"""
pi = torch.acos(torch.zeros(1)).item() * 2
k = torch.arange(n)
nodes = torch.sort(torch.cos(pi * (k + 0.5) / n))[0]
return nodes