Files
PINA/tests/test_solver/test_gradient_pinn.py
Dario Coscia 6dd7bd2825 Refactoring solvers (#541)
* Refactoring solvers

* Simplify logic compile
* Improve and update doc
* Create SupervisedSolverInterface
* Specialize SupervisedSolver and ReducedOrderModelSolver
* Create EnsembleSolverInterface + EnsembleSupervisedSolver
* Create tests ensemble solvers

* formatter

* codacy

* fix issues + speedup test
2025-04-23 18:53:30 +02:00

170 lines
4.9 KiB
Python

import pytest
import torch
from pina import LabelTensor, Condition
from pina.problem import TimeDependentProblem
from pina.solver import GradientPINN
from pina.model import FeedForward
from pina.trainer import Trainer
from pina.problem.zoo import (
Poisson2DSquareProblem as Poisson,
InversePoisson2DSquareProblem as InversePoisson,
)
from pina.condition import (
InputTargetCondition,
InputEquationCondition,
DomainEquationCondition,
)
from torch._dynamo.eval_frame import OptimizedModule
class DummyTimeProblem(TimeDependentProblem):
"""
A mock time-dependent problem for testing purposes.
"""
output_variables = ["u"]
temporal_domain = None
conditions = {}
# define problems
problem = Poisson()
problem.discretise_domain(10)
inverse_problem = InversePoisson()
inverse_problem.discretise_domain(10)
# reduce the number of data points to speed up testing
data_condition = inverse_problem.conditions["data"]
data_condition.input = data_condition.input[:10]
data_condition.target = data_condition.target[:10]
# add input-output condition to test supervised learning
input_pts = torch.rand(10, len(problem.input_variables))
input_pts = LabelTensor(input_pts, problem.input_variables)
output_pts = torch.rand(10, len(problem.output_variables))
output_pts = LabelTensor(output_pts, problem.output_variables)
problem.conditions["data"] = Condition(input=input_pts, target=output_pts)
# define model
model = FeedForward(len(problem.input_variables), len(problem.output_variables))
@pytest.mark.parametrize("problem", [problem, inverse_problem])
def test_constructor(problem):
with pytest.raises(ValueError):
GradientPINN(model=model, problem=DummyTimeProblem())
solver = GradientPINN(model=model, problem=problem)
assert solver.accepted_conditions_types == (
InputTargetCondition,
InputEquationCondition,
DomainEquationCondition,
)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_train(problem, batch_size, compile):
solver = GradientPINN(model=model, problem=problem)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=batch_size,
train_size=1.0,
val_size=0.0,
test_size=0.0,
compile=compile,
)
trainer.train()
if trainer.compile:
assert isinstance(solver.model, OptimizedModule)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_validation(problem, batch_size, compile):
solver = GradientPINN(model=model, problem=problem)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=batch_size,
train_size=0.9,
val_size=0.1,
test_size=0.0,
compile=compile,
)
trainer.train()
if trainer.compile:
assert isinstance(solver.model, OptimizedModule)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_test(problem, batch_size, compile):
solver = GradientPINN(model=model, problem=problem)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=batch_size,
train_size=0.7,
val_size=0.2,
test_size=0.1,
compile=compile,
)
trainer.test()
if trainer.compile:
assert isinstance(solver.model, OptimizedModule)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
def test_train_load_restore(problem):
dir = "tests/test_solver/tmp"
problem = problem
solver = GradientPINN(model=model, problem=problem)
trainer = Trainer(
solver=solver,
max_epochs=5,
accelerator="cpu",
batch_size=None,
train_size=0.7,
val_size=0.2,
test_size=0.1,
default_root_dir=dir,
)
trainer.train()
# restore
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator="cpu")
new_trainer.train(
ckpt_path=f"{dir}/lightning_logs/version_0/checkpoints/"
+ "epoch=4-step=5.ckpt"
)
# loading
new_solver = GradientPINN.load_from_checkpoint(
f"{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt",
problem=problem,
model=model,
)
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
assert new_solver.forward(test_pts).shape == (20, 1)
assert new_solver.forward(test_pts).shape == (
solver.forward(test_pts).shape
)
torch.testing.assert_close(
new_solver.forward(test_pts), solver.forward(test_pts)
)
# rm directories
import shutil
shutil.rmtree("tests/test_solver/tmp")