Files
PINA/pina/geometry/union_domain.py
Kush 2d0256a179 Geometry Operations Enhancement (#122)
* updating exclusion domain
- update sample/ is_inside
- create tests

* difference fixes
- random iteration list for sample

* created Intersection

* created a Difference domain

* unittest

* docstrings and minor fixes

* Refacotring Geometries
- added OperationInterface
- redid test cases
- edited Union, Intersect, Exclusion, and Difference
to inherit from OperationInterface
- simplified Union, Intersect, Exclusion, and Difference

* rm lighting logs

---------

Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-16-239.WIFIeduroamSTUD.units.it>
2023-11-17 09:51:29 +01:00

95 lines
3.5 KiB
Python

import torch
from .location import Location
from .operation_interface import OperationInterface
from ..utils import check_consistency
from ..label_tensor import LabelTensor
import random
class Union(OperationInterface):
""" PINA implementation of Unions of Domains."""
def __init__(self, geometries):
""" PINA implementation of Unions of Domains.
:param list geometries: A list of geometries from 'pina.geometry'
such as 'EllipsoidDomain' or 'CartesianDomain'.
:Example:
# Create two ellipsoid domains
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
# Create a union of the ellipsoid domains
>>> union = GeometryUnion([ellipsoid1, ellipsoid2])
"""
super().__init__(geometries)
def is_inside(self, point, check_border=False):
"""Check if a point is inside the union domain.
:param point: Point to be checked.
:type point: LabelTensor
:param check_border: Check if the point is also on the frontier
of the ellipsoid, default False.
:type check_border: bool
:return: Returning True if the point is inside, False otherwise.
:rtype: bool
"""
for geometry in self.geometries:
if geometry.is_inside(point, check_border):
return True
return False
def sample(self, n, mode='random', variables='all'):
"""Sample routine for union domain.
:param n: Number of points to sample in the shape.
:type n: int
:param mode: Mode for sampling, defaults to 'random'.
Available modes include: random sampling, 'random'.
:type mode: str, optional
:param variables: pinn variable to be sampled, defaults to 'all'.
:type variables: str or list[str], optional
:Example:
# Create two ellipsoid domains
>>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]})
>>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]})
# Create a union of the ellipsoid domains
>>> union = Union([cartesian1, cartesian2])
>>> union.sample(n=5)
LabelTensor([[1.2128, 2.1991],
[1.3530, 2.4317],
[2.2562, 1.6605],
[0.8451, 1.9878],
[1.8623, 0.7102]])
>>> len(union.sample(n=5)
5
"""
sampled_points = []
# calculate the number of points to sample for each geometry and the remainder
remainder = n % len(self.geometries)
num_points = n // len(self.geometries)
# sample the points
# NB. geometries as shuffled since if we sample
# multiple times just one point, we would end
# up sampling only from the first geometry.
iter_ = random.sample(self.geometries, len(self.geometries))
for i, geometry in enumerate(iter_):
# int(i < remainder) is one only if we have a remainder
# different than zero. Notice that len(geometries) is
# always smaller than remaider.
sampled_points.append(geometry.sample(num_points + int(i < remainder), mode, variables))
# in case number of sampled points is smaller than the number of geometries
if len(sampled_points) >= n:
break
return LabelTensor(torch.cat(sampled_points), labels=self.variables)