* multiple functions for version 0.0 * lightining update * minor changes * data pinn loss added --------- Co-authored-by: Nicola Demo <demo.nicola@gmail.com> Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-3-125.WIFIeduroamSTUD.units.it> Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.station> Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Dario Coscia <dariocoscia@192.168.1.38>
50 lines
1.4 KiB
Python
50 lines
1.4 KiB
Python
import torch
|
|
import pytest
|
|
|
|
from pina.loss import *
|
|
|
|
input = torch.tensor([[3.], [1.], [-8.]])
|
|
target = torch.tensor([[6.], [4.], [2.]])
|
|
available_reductions = ['str', 'mean', 'none']
|
|
|
|
|
|
def test_LpLoss_constructor():
|
|
# test reduction
|
|
for reduction in available_reductions:
|
|
LpLoss(reduction=reduction)
|
|
# test p
|
|
for p in [float('inf'), -float('inf'), 1, 10, -8]:
|
|
LpLoss(p=p)
|
|
|
|
def test_LpLoss_forward():
|
|
# l2 loss
|
|
loss = LpLoss(p=2, reduction='mean')
|
|
l2_loss = torch.mean(torch.sqrt((input-target).pow(2)))
|
|
assert loss(input, target) == l2_loss
|
|
# l1 loss
|
|
loss = LpLoss(p=1, reduction='sum')
|
|
l1_loss = torch.sum(torch.abs(input-target))
|
|
assert loss(input, target) == l1_loss
|
|
|
|
def test_LpRelativeLoss_constructor():
|
|
# test reduction
|
|
for reduction in available_reductions:
|
|
LpLoss(reduction=reduction, relative=True)
|
|
# test p
|
|
for p in [float('inf'), -float('inf'), 1, 10, -8]:
|
|
LpLoss(p=p,relative=True)
|
|
|
|
def test_LpRelativeLoss_forward():
|
|
# l2 relative loss
|
|
loss = LpLoss(p=2, reduction='mean',relative=True)
|
|
l2_loss = torch.sqrt((input-target).pow(2))/torch.sqrt(input.pow(2))
|
|
assert loss(input, target) == torch.mean(l2_loss)
|
|
# l1 relative loss
|
|
loss = LpLoss(p=1, reduction='sum',relative=True)
|
|
l1_loss = torch.abs(input-target)/torch.abs(input)
|
|
assert loss(input, target) == torch.sum(l1_loss)
|
|
|
|
|
|
|
|
|