Files
PINA/examples/run_parametric_elliptic_optimal_control_alpha.py
2022-07-21 13:41:59 +02:00

84 lines
2.4 KiB
Python

import argparse
import numpy as np
import torch
from torch.nn import Softplus
from pina import PINN, LabelTensor, Plotter
from pina.model import MultiFeedForward
from problems.parametric_elliptic_optimal_control_alpha_variable import (
ParametricEllipticOptimalControl)
class myFeature(torch.nn.Module):
"""
Feature: sin(x)
"""
def __init__(self):
super(myFeature, self).__init__()
def forward(self, x):
t = (-x.extract(['x1'])**2+1) * (-x.extract(['x2'])**2+1)
return LabelTensor(t, ['k0'])
class CustomMultiDFF(MultiFeedForward):
def __init__(self, dff_dict):
super().__init__(dff_dict)
def forward(self, x):
out = self.uu(x)
p = LabelTensor((out.extract(['u_param']) * x.extract(['alpha'])), ['p'])
return out.append(p)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-s", "-save", action="store_true")
group.add_argument("-l", "-load", action="store_true")
args = parser.parse_args()
opc = ParametricEllipticOptimalControl()
model = CustomMultiDFF(
{
'uu': {
'input_variables': ['x1', 'x2', 'mu', 'alpha'],
'output_variables': ['u_param', 'y'],
'layers': [40, 40, 20],
'func': Softplus,
'extra_features': [myFeature()],
},
}
)
pinn = PINN(
opc,
model,
lr=0.002,
error_norm='mse',
regularizer=1e-8)
if args.s:
pinn.span_pts(
{'variables': ['x1', 'x2'], 'mode': 'random', 'n': 100},
{'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5},
locations=['D'])
pinn.span_pts(
{'variables': ['x1', 'x2'], 'mode': 'grid', 'n': 20},
{'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5},
locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
pinn.train(1000, 20)
pinn.save_state('pina.ocp')
else:
pinn.load_state('pina.ocp')
plotter = Plotter()
plotter.plot(pinn, components='y', fixed_variables={'alpha': 0.01, 'mu': 1.0})
plotter.plot(pinn, components='u_param', fixed_variables={'alpha': 0.01, 'mu': 1.0})
plotter.plot(pinn, components='p', fixed_variables={'alpha': 0.01, 'mu': 1.0})