Files
PINA/pina/solvers/pinn.py
2024-02-09 15:11:51 +01:00

233 lines
7.6 KiB
Python

""" Module for PINN """
import torch
try:
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
except ImportError:
from torch.optim.lr_scheduler import (
_LRScheduler as LRScheduler,
) # torch < 2.0
import sys
from torch.optim.lr_scheduler import ConstantLR
from .solver import SolverInterface
from ..label_tensor import LabelTensor
from ..utils import check_consistency
from ..loss import LossInterface
from ..problem import InverseProblem
from torch.nn.modules.loss import _Loss
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
class PINN(SolverInterface):
"""
PINN solver class. This class implements Physics Informed Neural
Network solvers, using a user specified ``model`` to solve a specific
``problem``. It can be used for solving both forward and inverse problems.
.. seealso::
**Original reference**: Karniadakis, G. E., Kevrekidis, I. G., Lu, L.,
Perdikaris, P., Wang, S., & Yang, L. (2021).
Physics-informed machine learning. Nature Reviews Physics, 3(6), 422-440.
<https://doi.org/10.1038/s42254-021-00314-5>`_.
"""
def __init__(
self,
problem,
model,
extra_features=None,
loss=torch.nn.MSELoss(),
optimizer=torch.optim.Adam,
optimizer_kwargs={"lr": 0.001},
scheduler=ConstantLR,
scheduler_kwargs={"factor": 1, "total_iters": 0},
):
"""
:param AbstractProblem problem: The formulation of the problem.
:param torch.nn.Module model: The neural network model to use.
:param torch.nn.Module loss: The loss function used as minimizer,
default :class:`torch.nn.MSELoss`.
:param torch.nn.Module extra_features: The additional input
features to use as augmented input.
:param torch.optim.Optimizer optimizer: The neural network optimizer to
use; default is :class:`torch.optim.Adam`.
:param dict optimizer_kwargs: Optimizer constructor keyword args.
:param torch.optim.LRScheduler scheduler: Learning
rate scheduler.
:param dict scheduler_kwargs: LR scheduler constructor keyword args.
"""
super().__init__(
models=[model],
problem=problem,
optimizers=[optimizer],
optimizers_kwargs=[optimizer_kwargs],
extra_features=extra_features,
)
# check consistency
check_consistency(scheduler, LRScheduler, subclass=True)
check_consistency(scheduler_kwargs, dict)
check_consistency(loss, (LossInterface, _Loss), subclass=False)
# assign variables
self._scheduler = scheduler(self.optimizers[0], **scheduler_kwargs)
self._loss = loss
self._neural_net = self.models[0]
# inverse problem handling
if isinstance(self.problem, InverseProblem):
self._params = self.problem.unknown_parameters
else:
self._params = None
def forward(self, x):
"""
Forward pass implementation for the PINN
solver.
:param torch.Tensor x: Input tensor.
:return: PINN solution.
:rtype: torch.Tensor
"""
return self.neural_net(x)
def configure_optimizers(self):
"""
Optimizer configuration for the PINN
solver.
:return: The optimizers and the schedulers
:rtype: tuple(list, list)
"""
# if the problem is an InverseProblem, add the unknown parameters
# to the parameters that the optimizer needs to optimize
if isinstance(self.problem, InverseProblem):
self.optimizers[0].add_param_group(
{
"params": [
self._params[var]
for var in self.problem.unknown_variables
]
}
)
return self.optimizers, [self.scheduler]
def _clamp_inverse_problem_params(self):
for v in self._params:
self._params[v].data.clamp_(
self.problem.unknown_parameter_domain.range_[v][0],
self.problem.unknown_parameter_domain.range_[v][1],
)
def _loss_data(self, input, output):
return self.loss(self.forward(input), output)
def _loss_phys(self, samples, equation):
try:
residual = equation.residual(samples, self.forward(samples))
except (
TypeError
): # this occurs when the function has three inputs, i.e. inverse problem
residual = equation.residual(
samples, self.forward(samples), self._params
)
return self.loss(
torch.zeros_like(residual, requires_grad=True), residual
)
def training_step(self, batch, batch_idx):
"""
PINN solver training step.
:param batch: The batch element in the dataloader.
:type batch: tuple
:param batch_idx: The batch index.
:type batch_idx: int
:return: The sum of the loss functions.
:rtype: LabelTensor
"""
dataloader = self.trainer.train_dataloader
condition_losses = []
condition_idx = batch["condition"]
for condition_id in range(condition_idx.min(), condition_idx.max() + 1):
if sys.version_info >= (3, 8):
condition_name = dataloader.condition_names[condition_id]
else:
condition_name = dataloader.loaders.condition_names[
condition_id
]
condition = self.problem.conditions[condition_name]
pts = batch["pts"]
if len(batch) == 2:
samples = pts[condition_idx == condition_id]
loss = self._loss_phys(samples, condition.equation)
elif len(batch) == 3:
samples = pts[condition_idx == condition_id]
ground_truth = batch["output"][condition_idx == condition_id]
loss = self._loss_data(samples, ground_truth)
else:
raise ValueError("Batch size not supported")
# TODO for users this us hard to remember when creating a new solver, to fix in a smarter way
loss = loss.as_subclass(torch.Tensor)
# # add condition losses and accumulate logging for each epoch
condition_losses.append(loss * condition.data_weight)
self.log(
condition_name + "_loss",
float(loss),
prog_bar=True,
logger=True,
on_epoch=True,
on_step=False,
)
# clamp unknown parameters of the InverseProblem to their domain ranges (if needed)
if isinstance(self.problem, InverseProblem):
self._clamp_inverse_problem_params()
# TODO Fix the bug, tot_loss is a label tensor without labels
# we need to pass it as a torch tensor to make everything work
total_loss = sum(condition_losses)
self.log(
"mean_loss",
float(total_loss / len(condition_losses)),
prog_bar=True,
logger=True,
on_epoch=True,
on_step=False,
)
return total_loss
@property
def scheduler(self):
"""
Scheduler for the PINN training.
"""
return self._scheduler
@property
def neural_net(self):
"""
Neural network for the PINN training.
"""
return self._neural_net
@property
def loss(self):
"""
Loss for the PINN training.
"""
return self._loss