Files
PINA/pina/condition/input_equation_condition.py
2025-04-17 10:48:31 +02:00

125 lines
4.5 KiB
Python

"""
Module to define InputEquationCondition class and its subclasses.
"""
from torch_geometric.data import Data
from .condition_interface import ConditionInterface
from ..label_tensor import LabelTensor
from ..graph import Graph
from ..utils import check_consistency
from ..equation.equation_interface import EquationInterface
class InputEquationCondition(ConditionInterface):
"""
Condition for input/equation data. This condition must be used every
time a Physics Informed Loss is needed in the Solver.
"""
__slots__ = ["input", "equation"]
_avail_input_cls = (LabelTensor, Graph, list, tuple)
_avail_equation_cls = EquationInterface
def __new__(cls, input, equation):
"""
Instantiate the appropriate subclass of InputEquationCondition based on
the type of input data.
:param input: Input data. It can be a LabelTensor or a Graph object.
:type input: LabelTensor | Graph | list[Graph] | tuple[Graph]
:param EquationInterface equation: Equation object containing the
equation function.
:return: Subclass of InputEquationCondition, based on the input type.
:rtype: InputTensorEquationCondition | InputGraphEquationCondition
:raises ValueError: If input is not of type :class:`torch.Tensor`,
:class:`LabelTensor`, :class:`Graph`, or
:class:`torch_geometric.data.Data`.
"""
# If the class is already a subclass, return the instance
if cls != InputEquationCondition:
return super().__new__(cls)
# Instanciate the correct subclass
if isinstance(input, (Graph, Data, list, tuple)):
subclass = InputGraphEquationCondition
cls._check_graph_list_consistency(input)
subclass._check_label_tensor(input)
return subclass.__new__(subclass, input, equation)
if isinstance(input, LabelTensor):
subclass = InputTensorEquationCondition
return subclass.__new__(subclass, input, equation)
# If the input is not a LabelTensor or a Graph object raise an error
raise ValueError(
"The input data object must be a LabelTensor or a Graph object."
)
def __init__(self, input, equation):
"""
Initialize the InputEquationCondition by storing the input and equation.
:param input: Input data for the condition.
:type input: LabelTensor | Graph | list[Graph] | tuple[Graph]
:param EquationInterface equation: Equation object containing the
equation function.
.. note::
If ``input`` is composed by a list of :class:`Graph`/
:class:`torch_geometric.data.Data` objects, all elements must have
the same structure (keys and data types). Moreover, at least one
attribute must be a :class:`LabelTensor`.
"""
super().__init__()
self.input = input
self.equation = equation
def __setattr__(self, key, value):
if key == "input":
check_consistency(value, self._avail_input_cls)
InputEquationCondition.__dict__[key].__set__(self, value)
elif key == "equation":
check_consistency(value, self._avail_equation_cls)
InputEquationCondition.__dict__[key].__set__(self, value)
elif key in ("_problem"):
super().__setattr__(key, value)
class InputTensorEquationCondition(InputEquationCondition):
"""
InputEquationCondition subclass for LabelTensor input data.
"""
class InputGraphEquationCondition(InputEquationCondition):
"""
InputEquationCondition subclass for Graph input data.
"""
@staticmethod
def _check_label_tensor(input):
"""
Check if at least one LabelTensor is present in the Graph object.
:param input: Input data.
:type input: torch.Tensor | Graph | torch_geometric.data.Data
:raises ValueError: If the input data object does not contain at least
one LabelTensor.
"""
# Store the fist element of the list/tuple if input is a list/tuple
# it is anougth to check the first element because all elements must
# have the same type and structure (already checked)
data = input[0] if isinstance(input, (list, tuple)) else input
# Check if the input data contains at least one LabelTensor
for v in data.values():
if isinstance(v, LabelTensor):
return
raise ValueError(
"The input data object must contain at least one LabelTensor."
)