* Reimplement conditions * Refactor datasets and implement LabelBatch --------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
183 lines
5.9 KiB
Python
183 lines
5.9 KiB
Python
"""
|
|
This module provide basic data management functionalities
|
|
"""
|
|
|
|
from abc import abstractmethod
|
|
from torch.utils.data import Dataset
|
|
from torch_geometric.data import Data
|
|
from ..graph import Graph, LabelBatch
|
|
|
|
|
|
class PinaDatasetFactory:
|
|
"""
|
|
Factory class for the PINA dataset. Depending on the type inside the
|
|
conditions it creates a different dataset object:
|
|
- PinaTensorDataset for torch.Tensor
|
|
- PinaGraphDataset for list of torch_geometric.data.Data objects
|
|
"""
|
|
|
|
def __new__(cls, conditions_dict, **kwargs):
|
|
# Check if conditions_dict is empty
|
|
if len(conditions_dict) == 0:
|
|
raise ValueError("No conditions provided")
|
|
|
|
# Check is a Graph is present in the conditions
|
|
is_graph = cls._is_graph_dataset(conditions_dict)
|
|
if is_graph:
|
|
# If a Graph is present, return a PinaGraphDataset
|
|
return PinaGraphDataset(conditions_dict, **kwargs)
|
|
# If no Graph is present, return a PinaTensorDataset
|
|
return PinaTensorDataset(conditions_dict, **kwargs)
|
|
|
|
@staticmethod
|
|
def _is_graph_dataset(conditions_dict):
|
|
for v in conditions_dict.values():
|
|
for cond in v.values():
|
|
if isinstance(cond, (Data, Graph, list)):
|
|
return True
|
|
return False
|
|
|
|
|
|
class PinaDataset(Dataset):
|
|
"""
|
|
Abstract class for the PINA dataset
|
|
"""
|
|
|
|
def __init__(
|
|
self, conditions_dict, max_conditions_lengths, automatic_batching
|
|
):
|
|
# Store the conditions dictionary
|
|
self.conditions_dict = conditions_dict
|
|
# Store the maximum number of conditions to consider
|
|
self.max_conditions_lengths = max_conditions_lengths
|
|
# Store length of each condition
|
|
self.conditions_length = {
|
|
k: len(v["input"]) for k, v in self.conditions_dict.items()
|
|
}
|
|
# Store the maximum length of the dataset
|
|
self.length = max(self.conditions_length.values())
|
|
# Dynamically set the getitem function based on automatic batching
|
|
if automatic_batching:
|
|
self._getitem_func = self._getitem_int
|
|
else:
|
|
self._getitem_func = self._getitem_dummy
|
|
|
|
def _get_max_len(self):
|
|
""""""
|
|
max_len = 0
|
|
for condition in self.conditions_dict.values():
|
|
max_len = max(max_len, len(condition["input"]))
|
|
return max_len
|
|
|
|
def __len__(self):
|
|
return self.length
|
|
|
|
def __getitem__(self, idx):
|
|
return self._getitem_func(idx)
|
|
|
|
def _getitem_dummy(self, idx):
|
|
# If automatic batching is disabled, return the data at the given index
|
|
return idx
|
|
|
|
def _getitem_int(self, idx):
|
|
# If automatic batching is enabled, return the data at the given index
|
|
return {
|
|
k: {k_data: v[k_data][idx % len(v["input"])] for k_data in v.keys()}
|
|
for k, v in self.conditions_dict.items()
|
|
}
|
|
|
|
def get_all_data(self):
|
|
"""
|
|
Return all data in the dataset
|
|
|
|
:return: All data in the dataset
|
|
:rtype: dict
|
|
"""
|
|
index = list(range(len(self)))
|
|
return self.fetch_from_idx_list(index)
|
|
|
|
def fetch_from_idx_list(self, idx):
|
|
"""
|
|
Return data from the dataset given a list of indices
|
|
|
|
:param idx: List of indices
|
|
:type idx: list
|
|
:return: Data from the dataset
|
|
:rtype: dict
|
|
"""
|
|
to_return_dict = {}
|
|
for condition, data in self.conditions_dict.items():
|
|
# Get the indices for the current condition
|
|
cond_idx = idx[: self.max_conditions_lengths[condition]]
|
|
# Get the length of the current condition
|
|
condition_len = self.conditions_length[condition]
|
|
# If the length of the dataset is greater than the length of the
|
|
# current condition, repeat the indices
|
|
if self.length > condition_len:
|
|
cond_idx = [idx % condition_len for idx in cond_idx]
|
|
# Retrieve the data from the current condition
|
|
to_return_dict[condition] = self._retrive_data(data, cond_idx)
|
|
return to_return_dict
|
|
|
|
@abstractmethod
|
|
def _retrive_data(self, data, idx_list):
|
|
pass
|
|
|
|
|
|
class PinaTensorDataset(PinaDataset):
|
|
"""
|
|
Class for the PINA dataset with torch.Tensor data
|
|
"""
|
|
|
|
# Override _retrive_data method for torch.Tensor data
|
|
def _retrive_data(self, data, idx_list):
|
|
return {k: v[idx_list] for k, v in data.items()}
|
|
|
|
@property
|
|
def input(self):
|
|
"""
|
|
Method to return input points for training.
|
|
"""
|
|
return {k: v["input"] for k, v in self.conditions_dict.items()}
|
|
|
|
|
|
class PinaGraphDataset(PinaDataset):
|
|
"""
|
|
Class for the PINA dataset with torch_geometric.data.Data data
|
|
"""
|
|
|
|
def _create_graph_batch_from_list(self, data):
|
|
batch = LabelBatch.from_data_list(data)
|
|
return batch
|
|
|
|
def _create_output_batch(self, data):
|
|
out = data.reshape(-1, *data.shape[2:])
|
|
return out
|
|
|
|
def create_graph_batch(self, data):
|
|
"""
|
|
Create a Batch object from a list of Data objects.
|
|
|
|
:param data: List of Data objects
|
|
:type data: list
|
|
:return: Batch object
|
|
:rtype: Batch or PinaBatch
|
|
"""
|
|
if isinstance(data[0], Data):
|
|
return self._create_graph_batch_from_list(data)
|
|
return self._create_output_batch(data)
|
|
|
|
# Override _retrive_data method for graph handling
|
|
def _retrive_data(self, data, idx_list):
|
|
# Return the data from the current condition
|
|
# If the data is a list of Data objects, create a Batch object
|
|
# If the data is a list of torch.Tensor objects, create a torch.Tensor
|
|
return {
|
|
k: (
|
|
self._create_graph_batch_from_list([v[i] for i in idx_list])
|
|
if isinstance(v, list)
|
|
else self._create_output_batch(v[idx_list])
|
|
)
|
|
for k, v in data.items()
|
|
}
|