Files
PINA/tests/test_solver/test_supervised_solver.py
Filippo Olivo 4177bfbb50 Fix Codacy Warnings (#477)
---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
2025-03-19 17:48:18 +01:00

143 lines
4.1 KiB
Python

import torch
import pytest
from pina import Condition, LabelTensor
from pina.condition import InputTargetCondition
from pina.problem import AbstractProblem
from pina.solver import SupervisedSolver
from pina.model import FeedForward
from pina.trainer import Trainer
from torch._dynamo.eval_frame import OptimizedModule
class LabelTensorProblem(AbstractProblem):
input_variables = ["u_0", "u_1"]
output_variables = ["u"]
conditions = {
"data": Condition(
input=LabelTensor(torch.randn(20, 2), ["u_0", "u_1"]),
target=LabelTensor(torch.randn(20, 1), ["u"]),
),
}
class TensorProblem(AbstractProblem):
input_variables = ["u_0", "u_1"]
output_variables = ["u"]
conditions = {
"data": Condition(input=torch.randn(20, 2), target=torch.randn(20, 1))
}
model = FeedForward(2, 1)
def test_constructor():
SupervisedSolver(problem=TensorProblem(), model=model)
SupervisedSolver(problem=LabelTensorProblem(), model=model)
assert SupervisedSolver.accepted_conditions_types == (InputTargetCondition)
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("use_lt", [True, False])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_train(use_lt, batch_size, compile):
problem = LabelTensorProblem() if use_lt else TensorProblem()
solver = SupervisedSolver(problem=problem, model=model, use_lt=use_lt)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=batch_size,
train_size=1.0,
test_size=0.0,
val_size=0.0,
compile=compile,
)
trainer.train()
if trainer.compile:
assert isinstance(solver.model, OptimizedModule)
@pytest.mark.parametrize("use_lt", [True, False])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_validation(use_lt, compile):
problem = LabelTensorProblem() if use_lt else TensorProblem()
solver = SupervisedSolver(problem=problem, model=model, use_lt=use_lt)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=None,
train_size=0.9,
val_size=0.1,
test_size=0.0,
compile=compile,
)
trainer.train()
if trainer.compile:
assert isinstance(solver.model, OptimizedModule)
@pytest.mark.parametrize("use_lt", [True, False])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_test(use_lt, compile):
problem = LabelTensorProblem() if use_lt else TensorProblem()
solver = SupervisedSolver(problem=problem, model=model, use_lt=use_lt)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=None,
train_size=0.8,
val_size=0.1,
test_size=0.1,
compile=compile,
)
trainer.test()
if trainer.compile:
assert isinstance(solver.model, OptimizedModule)
def test_train_load_restore():
dir = "tests/test_solver/tmp/"
problem = LabelTensorProblem()
solver = SupervisedSolver(problem=problem, model=model)
trainer = Trainer(
solver=solver,
max_epochs=5,
accelerator="cpu",
batch_size=None,
train_size=0.9,
test_size=0.1,
val_size=0.0,
default_root_dir=dir,
)
trainer.train()
# restore
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator="cpu")
new_trainer.train(
ckpt_path=f"{dir}/lightning_logs/version_0/checkpoints/"
+ "epoch=4-step=5.ckpt"
)
# loading
new_solver = SupervisedSolver.load_from_checkpoint(
f"{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt",
problem=problem,
model=model,
)
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
assert new_solver.forward(test_pts).shape == (20, 1)
assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
torch.testing.assert_close(
new_solver.forward(test_pts), solver.forward(test_pts)
)
# rm directories
import shutil
shutil.rmtree("tests/test_solver/tmp")