33 lines
1.1 KiB
Python
33 lines
1.1 KiB
Python
import torch
|
|
|
|
from . import ConditionInterface
|
|
from ..label_tensor import LabelTensor
|
|
from ..graph import Graph
|
|
from ..utils import check_consistency
|
|
|
|
|
|
class DataConditionInterface(ConditionInterface):
|
|
"""
|
|
Condition for data. This condition must be used every
|
|
time a Unsupervised Loss is needed in the Solver. The conditionalvariable
|
|
can be passed as extra-input when the model learns a conditional
|
|
distribution
|
|
"""
|
|
|
|
__slots__ = ["input_points", "conditional_variables"]
|
|
|
|
def __init__(self, input_points, conditional_variables=None):
|
|
"""
|
|
TODO : add docstring
|
|
"""
|
|
super().__init__()
|
|
self.input_points = input_points
|
|
self.conditional_variables = conditional_variables
|
|
|
|
def __setattr__(self, key, value):
|
|
if (key == "input_points") or (key == "conditional_variables"):
|
|
check_consistency(value, (LabelTensor, Graph, torch.Tensor))
|
|
DataConditionInterface.__dict__[key].__set__(self, value)
|
|
elif key in ("_problem", "_condition_type"):
|
|
super().__setattr__(key, value)
|