Files
PINA/pina/graph.py
Dario Coscia 42ab1a666b Formatting
* Adding black as dev dependency
* Formatting pina code
* Formatting tests
2025-03-19 17:46:36 +01:00

320 lines
13 KiB
Python

from logging import warning
import torch
from . import LabelTensor
from torch_geometric.data import Data
from torch_geometric.utils import to_undirected
import inspect
class Graph:
"""
Class for the graph construction.
"""
def __init__(
self,
x,
pos,
edge_index,
edge_attr=None,
build_edge_attr=False,
undirected=False,
custom_build_edge_attr=None,
additional_params=None,
):
"""
Constructor for the Graph class. This object creates a list of PyTorch Geometric Data objects.
Based on the input of x and pos there could be the following cases:
1. 1 pos, 1 x: a single graph will be created
2. N pos, 1 x: N graphs will be created with the same node features
3. 1 pos, N x: N graphs will be created with the same nodes but different node features
4. N pos, N x: N graphs will be created
:param x: Node features. Can be a single 2D tensor of shape [num_nodes, num_node_features],
or a 3D tensor of shape [n_graphs, num_nodes, num_node_features]
or a list of such 2D tensors of shape [num_nodes, num_node_features].
:type x: torch.Tensor or list[torch.Tensor]
:param pos: Node coordinates. Can be a single 2D tensor of shape [num_nodes, num_coordinates],
or a 3D tensor of shape [n_graphs, num_nodes, num_coordinates]
or a list of such 2D tensors of shape [num_nodes, num_coordinates].
:type pos: torch.Tensor or list[torch.Tensor]
:param edge_index: The edge index defining connections between nodes.
It should be a 2D tensor of shape [2, num_edges]
or a 3D tensor of shape [n_graphs, 2, num_edges]
or a list of such 2D tensors of shape [2, num_edges].
:type edge_index: torch.Tensor or list[torch.Tensor]
:param edge_attr: Edge features. If provided, should have the shape [num_edges, num_edge_features]
or be a list of such tensors for multiple graphs.
:type edge_attr: torch.Tensor or list[torch.Tensor], optional
:param build_edge_attr: Whether to compute edge attributes during initialization.
:type build_edge_attr: bool, default=False
:param undirected: If True, converts the graph(s) into an undirected graph by adding reciprocal edges.
:type undirected: bool, default=False
:param custom_build_edge_attr: A user-defined function to generate edge attributes dynamically.
The function should take (x, pos, edge_index) as input and return a tensor
of shape [num_edges, num_edge_features].
:type custom_build_edge_attr: function or callable, optional
:param additional_params: Dictionary containing extra attributes to be added to each Data object.
Keys represent attribute names, and values should be tensors or lists of tensors.
:type additional_params: dict, optional
Note: if x, pos, and edge_index are both lists or 3D tensors, then len(x) == len(pos) == len(edge_index).
"""
self.data = []
x, pos, edge_index = self._check_input_consistency(x, pos, edge_index)
# Check input dimension consistency and store the number of graphs
data_len = self._check_len_consistency(x, pos)
if inspect.isfunction(custom_build_edge_attr):
self._build_edge_attr = custom_build_edge_attr
# Check consistency and initialize additional_parameters (if present)
additional_params = self._check_additional_params(
additional_params, data_len
)
# Make the graphs undirected
if undirected:
if isinstance(edge_index, list):
edge_index = [to_undirected(e) for e in edge_index]
else:
edge_index = to_undirected(edge_index)
# Prepare internal lists to create a graph list (same positions but
# different node features)
if isinstance(x, list) and isinstance(pos, (torch.Tensor, LabelTensor)):
# Replicate the positions, edge_index and edge_attr
pos, edge_index = [pos] * data_len, [edge_index] * data_len
# Prepare internal lists to create a list containing a single graph
elif isinstance(x, (torch.Tensor, LabelTensor)) and isinstance(
pos, (torch.Tensor, LabelTensor)
):
# Encapsulate the input tensors into lists
x, pos, edge_index = [x], [pos], [edge_index]
# Prepare internal lists to create a list of graphs (same node features
# but different positions)
elif isinstance(x, (torch.Tensor, LabelTensor)) and isinstance(
pos, list
):
# Replicate the node features
x = [x] * data_len
elif not isinstance(x, list) and not isinstance(pos, list):
raise TypeError("x and pos must be lists or tensors.")
# Build the edge attributes
edge_attr = self._check_and_build_edge_attr(
edge_attr, build_edge_attr, data_len, edge_index, pos, x
)
# Perform the graph construction
self._build_graph_list(x, pos, edge_index, edge_attr, additional_params)
def _build_graph_list(
self, x, pos, edge_index, edge_attr, additional_params
):
for i, (x_, pos_, edge_index_) in enumerate(zip(x, pos, edge_index)):
add_params_local = {k: v[i] for k, v in additional_params.items()}
if edge_attr is not None:
self.data.append(
Data(
x=x_,
pos=pos_,
edge_index=edge_index_,
edge_attr=edge_attr[i],
**add_params_local,
)
)
else:
self.data.append(
Data(
x=x_,
pos=pos_,
edge_index=edge_index_,
**add_params_local,
)
)
@staticmethod
def _build_edge_attr(x, pos, edge_index):
distance = torch.abs(
pos[edge_index[0]] - pos[edge_index[1]]
).as_subclass(torch.Tensor)
return distance
@staticmethod
def _check_len_consistency(x, pos):
if isinstance(x, list) and isinstance(pos, list):
if len(x) != len(pos):
raise ValueError("x and pos must have the same length.")
return max(len(x), len(pos))
elif isinstance(x, list) and not isinstance(pos, list):
return len(x)
elif not isinstance(x, list) and isinstance(pos, list):
return len(pos)
else:
return 1
@staticmethod
def _check_input_consistency(x, pos, edge_index=None):
# If x is a 3D tensor, we split it into a list of 2D tensors
if isinstance(x, torch.Tensor) and x.ndim == 3:
x = [x[i] for i in range(x.shape[0])]
elif not (isinstance(x, list) and all(t.ndim == 2 for t in x)) and not (
isinstance(x, torch.Tensor) and x.ndim == 2
):
raise TypeError(
"x must be either a list of 2D tensors or a 2D "
"tensor or a 3D tensor"
)
# If pos is a 3D tensor, we split it into a list of 2D tensors
if isinstance(pos, torch.Tensor) and pos.ndim == 3:
pos = [pos[i] for i in range(pos.shape[0])]
elif not (
isinstance(pos, list) and all(t.ndim == 2 for t in pos)
) and not (isinstance(pos, torch.Tensor) and pos.ndim == 2):
raise TypeError(
"pos must be either a list of 2D tensors or a 2D "
"tensor or a 3D tensor"
)
# If edge_index is a 3D tensor, we split it into a list of 2D tensors
if edge_index is not None:
if isinstance(edge_index, torch.Tensor) and edge_index.ndim == 3:
edge_index = [edge_index[i] for i in range(edge_index.shape[0])]
elif not (
isinstance(edge_index, list)
and all(t.ndim == 2 for t in edge_index)
) and not (
isinstance(edge_index, torch.Tensor) and edge_index.ndim == 2
):
raise TypeError(
"edge_index must be either a list of 2D tensors or a 2D "
"tensor or a 3D tensor"
)
return x, pos, edge_index
@staticmethod
def _check_additional_params(additional_params, data_len):
if additional_params is not None:
if not isinstance(additional_params, dict):
raise TypeError("additional_params must be a dictionary.")
for param, val in additional_params.items():
# Check if the values are tensors or lists of tensors
if isinstance(val, torch.Tensor):
# If the tensor is 3D, we split it into a list of 2D tensors
# In this case there must be a additional parameter for each
# node
if val.ndim == 3:
additional_params[param] = [
val[i] for i in range(val.shape[0])
]
# If the tensor is 2D, we replicate it for each node
elif val.ndim == 2:
additional_params[param] = [val] * data_len
# If the tensor is 1D, each graph has a scalar values as
# additional parameter
if val.ndim == 1:
if len(val) == data_len:
additional_params[param] = [
val[i] for i in range(len(val))
]
else:
additional_params[param] = [
val for _ in range(data_len)
]
elif not isinstance(val, list):
raise TypeError(
"additional_params values must be tensors "
"or lists of tensors."
)
else:
additional_params = {}
return additional_params
def _check_and_build_edge_attr(
self, edge_attr, build_edge_attr, data_len, edge_index, pos, x
):
# Check if edge_attr is consistent with x and pos
if edge_attr is not None:
if build_edge_attr is True:
warning(
"edge_attr is not None. build_edge_attr will not be "
"considered."
)
if isinstance(edge_attr, list):
if len(edge_attr) != data_len:
raise TypeError(
"edge_attr must have the same length as x " "and pos."
)
return [edge_attr] * data_len
if build_edge_attr:
return [
self._build_edge_attr(x_, pos_, edge_index_)
for x_, pos_, edge_index_ in zip(x, pos, edge_index)
]
class RadiusGraph(Graph):
def __init__(self, x, pos, r, **kwargs):
x, pos, edge_index = Graph._check_input_consistency(x, pos)
if isinstance(pos, (torch.Tensor, LabelTensor)):
edge_index = RadiusGraph._radius_graph(pos, r)
else:
edge_index = [RadiusGraph._radius_graph(p, r) for p in pos]
super().__init__(x=x, pos=pos, edge_index=edge_index, **kwargs)
@staticmethod
def _radius_graph(points, r):
"""
Implementation of the radius graph construction.
:param points: The input points.
:type points: torch.Tensor
:param r: The radius.
:type r: float
:return: The edge index.
:rtype: torch.Tensor
"""
dist = torch.cdist(points, points, p=2)
edge_index = torch.nonzero(dist <= r, as_tuple=False).t()
if isinstance(edge_index, LabelTensor):
edge_index = edge_index.tensor
return edge_index
class KNNGraph(Graph):
def __init__(self, x, pos, k, **kwargs):
x, pos, edge_index = Graph._check_input_consistency(x, pos)
if isinstance(pos, (torch.Tensor, LabelTensor)):
edge_index = KNNGraph._knn_graph(pos, k)
else:
edge_index = [KNNGraph._knn_graph(p, k) for p in pos]
super().__init__(x=x, pos=pos, edge_index=edge_index, **kwargs)
@staticmethod
def _knn_graph(points, k):
"""
Implementation of the k-nearest neighbors graph construction.
:param points: The input points.
:type points: torch.Tensor
:param k: The number of nearest neighbors.
:type k: int
:return: The edge index.
:rtype: torch.Tensor
"""
dist = torch.cdist(points, points, p=2)
knn_indices = torch.topk(dist, k=k + 1, largest=False).indices[:, 1:]
row = torch.arange(points.size(0)).repeat_interleave(k)
col = knn_indices.flatten()
edge_index = torch.stack([row, col], dim=0)
if isinstance(edge_index, LabelTensor):
edge_index = edge_index.tensor
return edge_index