259 lines
7.2 KiB
Python
259 lines
7.2 KiB
Python
import torch
|
|
import pytest
|
|
from torch._dynamo.eval_frame import OptimizedModule
|
|
from torch_geometric.nn import GCNConv
|
|
from torch_geometric.utils import to_dense_batch
|
|
from pina import Condition, LabelTensor
|
|
from pina.condition import InputTargetCondition
|
|
from pina.problem import AbstractProblem
|
|
from pina.solver import SupervisedSolver
|
|
from pina.model import FeedForward
|
|
from pina.trainer import Trainer
|
|
from pina.graph import KNNGraph
|
|
|
|
|
|
class LabelTensorProblem(AbstractProblem):
|
|
input_variables = ["u_0", "u_1"]
|
|
output_variables = ["u"]
|
|
conditions = {
|
|
"data": Condition(
|
|
input=LabelTensor(torch.randn(20, 2), ["u_0", "u_1"]),
|
|
target=LabelTensor(torch.randn(20, 1), ["u"]),
|
|
),
|
|
}
|
|
|
|
|
|
class TensorProblem(AbstractProblem):
|
|
input_variables = ["u_0", "u_1"]
|
|
output_variables = ["u"]
|
|
conditions = {
|
|
"data": Condition(input=torch.randn(20, 2), target=torch.randn(20, 1))
|
|
}
|
|
|
|
|
|
x = torch.rand((15, 20, 5))
|
|
pos = torch.rand((15, 20, 2))
|
|
output_ = torch.rand((15, 20, 1))
|
|
input_ = [
|
|
KNNGraph(x=x_, pos=pos_, neighbours=3, edge_attr=True)
|
|
for x_, pos_ in zip(x, pos)
|
|
]
|
|
|
|
|
|
class GraphProblem(AbstractProblem):
|
|
output_variables = None
|
|
conditions = {"data": Condition(input=input_, target=output_)}
|
|
|
|
|
|
x = LabelTensor(torch.rand((15, 20, 5)), ["a", "b", "c", "d", "e"])
|
|
pos = LabelTensor(torch.rand((15, 20, 2)), ["x", "y"])
|
|
output_ = LabelTensor(torch.rand((15, 20, 1)), ["u"])
|
|
input_ = [
|
|
KNNGraph(x=x[i], pos=pos[i], neighbours=3, edge_attr=True)
|
|
for i in range(len(x))
|
|
]
|
|
|
|
|
|
class GraphProblemLT(AbstractProblem):
|
|
output_variables = ["u"]
|
|
input_variables = ["a", "b", "c", "d", "e"]
|
|
conditions = {"data": Condition(input=input_, target=output_)}
|
|
|
|
|
|
model = FeedForward(2, 1)
|
|
|
|
|
|
class Model(torch.nn.Module):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.lift = torch.nn.Linear(5, 10)
|
|
self.activation = torch.nn.Tanh()
|
|
self.output = torch.nn.Linear(10, 1)
|
|
|
|
self.conv = GCNConv(10, 10)
|
|
|
|
def forward(self, batch):
|
|
|
|
x = batch.x
|
|
edge_index = batch.edge_index
|
|
for _ in range(1):
|
|
y = self.lift(x)
|
|
y = self.activation(y)
|
|
y = self.conv(y, edge_index)
|
|
y = self.activation(y)
|
|
y = self.output(y)
|
|
return to_dense_batch(y, batch.batch)[0]
|
|
|
|
|
|
graph_model = Model()
|
|
|
|
|
|
def test_constructor():
|
|
SupervisedSolver(problem=TensorProblem(), model=model)
|
|
SupervisedSolver(problem=LabelTensorProblem(), model=model)
|
|
assert SupervisedSolver.accepted_conditions_types == (InputTargetCondition)
|
|
|
|
|
|
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
|
@pytest.mark.parametrize("use_lt", [True, False])
|
|
@pytest.mark.parametrize("compile", [True, False])
|
|
def test_solver_train(use_lt, batch_size, compile):
|
|
problem = LabelTensorProblem() if use_lt else TensorProblem()
|
|
solver = SupervisedSolver(problem=problem, model=model, use_lt=use_lt)
|
|
trainer = Trainer(
|
|
solver=solver,
|
|
max_epochs=2,
|
|
accelerator="cpu",
|
|
batch_size=batch_size,
|
|
train_size=1.0,
|
|
test_size=0.0,
|
|
val_size=0.0,
|
|
compile=compile,
|
|
)
|
|
|
|
trainer.train()
|
|
if trainer.compile:
|
|
assert isinstance(solver.model, OptimizedModule)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_solver_train(use_lt=True, batch_size=20, compile=True)
|
|
|
|
|
|
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
|
@pytest.mark.parametrize("use_lt", [True, False])
|
|
def test_solver_train_graph(batch_size, use_lt):
|
|
problem = GraphProblemLT() if use_lt else GraphProblem()
|
|
solver = SupervisedSolver(problem=problem, model=graph_model, use_lt=use_lt)
|
|
trainer = Trainer(
|
|
solver=solver,
|
|
max_epochs=2,
|
|
accelerator="cpu",
|
|
batch_size=batch_size,
|
|
train_size=1.0,
|
|
test_size=0.0,
|
|
val_size=0.0,
|
|
)
|
|
|
|
trainer.train()
|
|
|
|
|
|
@pytest.mark.parametrize("use_lt", [True, False])
|
|
@pytest.mark.parametrize("compile", [True, False])
|
|
def test_solver_validation(use_lt, compile):
|
|
problem = LabelTensorProblem() if use_lt else TensorProblem()
|
|
solver = SupervisedSolver(problem=problem, model=model, use_lt=use_lt)
|
|
trainer = Trainer(
|
|
solver=solver,
|
|
max_epochs=2,
|
|
accelerator="cpu",
|
|
batch_size=None,
|
|
train_size=0.9,
|
|
val_size=0.1,
|
|
test_size=0.0,
|
|
compile=compile,
|
|
)
|
|
trainer.train()
|
|
if trainer.compile:
|
|
assert isinstance(solver.model, OptimizedModule)
|
|
|
|
|
|
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
|
@pytest.mark.parametrize("use_lt", [True, False])
|
|
def test_solver_validation_graph(batch_size, use_lt):
|
|
problem = GraphProblemLT() if use_lt else GraphProblem()
|
|
solver = SupervisedSolver(problem=problem, model=graph_model, use_lt=use_lt)
|
|
trainer = Trainer(
|
|
solver=solver,
|
|
max_epochs=2,
|
|
accelerator="cpu",
|
|
batch_size=batch_size,
|
|
train_size=0.9,
|
|
val_size=0.1,
|
|
test_size=0.0,
|
|
)
|
|
|
|
trainer.train()
|
|
|
|
|
|
@pytest.mark.parametrize("use_lt", [True, False])
|
|
@pytest.mark.parametrize("compile", [True, False])
|
|
def test_solver_test(use_lt, compile):
|
|
problem = LabelTensorProblem() if use_lt else TensorProblem()
|
|
solver = SupervisedSolver(problem=problem, model=model, use_lt=use_lt)
|
|
trainer = Trainer(
|
|
solver=solver,
|
|
max_epochs=2,
|
|
accelerator="cpu",
|
|
batch_size=None,
|
|
train_size=0.8,
|
|
val_size=0.1,
|
|
test_size=0.1,
|
|
compile=compile,
|
|
)
|
|
trainer.test()
|
|
if trainer.compile:
|
|
assert isinstance(solver.model, OptimizedModule)
|
|
|
|
|
|
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
|
@pytest.mark.parametrize("use_lt", [True, False])
|
|
def test_solver_test_graph(batch_size, use_lt):
|
|
problem = GraphProblemLT() if use_lt else GraphProblem()
|
|
solver = SupervisedSolver(problem=problem, model=graph_model, use_lt=use_lt)
|
|
trainer = Trainer(
|
|
solver=solver,
|
|
max_epochs=2,
|
|
accelerator="cpu",
|
|
batch_size=batch_size,
|
|
train_size=0.8,
|
|
val_size=0.1,
|
|
test_size=0.1,
|
|
)
|
|
|
|
trainer.test()
|
|
|
|
|
|
def test_train_load_restore():
|
|
dir = "tests/test_solver/tmp/"
|
|
problem = LabelTensorProblem()
|
|
solver = SupervisedSolver(problem=problem, model=model)
|
|
trainer = Trainer(
|
|
solver=solver,
|
|
max_epochs=5,
|
|
accelerator="cpu",
|
|
batch_size=None,
|
|
train_size=0.9,
|
|
test_size=0.1,
|
|
val_size=0.0,
|
|
default_root_dir=dir,
|
|
)
|
|
trainer.train()
|
|
|
|
# restore
|
|
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator="cpu")
|
|
new_trainer.train(
|
|
ckpt_path=f"{dir}/lightning_logs/version_0/checkpoints/"
|
|
+ "epoch=4-step=5.ckpt"
|
|
)
|
|
|
|
# loading
|
|
new_solver = SupervisedSolver.load_from_checkpoint(
|
|
f"{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt",
|
|
problem=problem,
|
|
model=model,
|
|
)
|
|
|
|
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
|
|
assert new_solver.forward(test_pts).shape == (20, 1)
|
|
assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
|
|
torch.testing.assert_close(
|
|
new_solver.forward(test_pts), solver.forward(test_pts)
|
|
)
|
|
|
|
# rm directories
|
|
import shutil
|
|
|
|
shutil.rmtree("tests/test_solver/tmp")
|