56 lines
2.1 KiB
Python
56 lines
2.1 KiB
Python
""" Poisson equation example. """
|
|
import numpy as np
|
|
import torch
|
|
|
|
from pina.problem import SpatialProblem
|
|
from pina.operators import laplacian
|
|
from pina import Condition, Span
|
|
|
|
# ===================================================== #
|
|
# #
|
|
# This script implements the two dimensional #
|
|
# Poisson problem. The Poisson class is defined #
|
|
# inheriting from SpatialProblem. We denote: #
|
|
# u --> field variable #
|
|
# x,y --> spatial variables #
|
|
# #
|
|
# ===================================================== #
|
|
|
|
|
|
class Poisson(SpatialProblem):
|
|
|
|
# assign output/ spatial variables
|
|
output_variables = ['u']
|
|
spatial_domain = Span({'x': [0, 1], 'y': [0, 1]})
|
|
|
|
# define the laplace equation
|
|
def laplace_equation(input_, output_):
|
|
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
|
torch.sin(input_.extract(['y'])*torch.pi))
|
|
delta_u = laplacian(output_.extract(['u']), input_)
|
|
return delta_u - force_term
|
|
|
|
# define nill dirichlet boundary conditions
|
|
def nil_dirichlet(input_, output_):
|
|
value = 0.0
|
|
return output_.extract(['u']) - value
|
|
|
|
# problem condition statement
|
|
conditions = {
|
|
'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1}), function=nil_dirichlet),
|
|
'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0}), function=nil_dirichlet),
|
|
'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1]}),function=nil_dirichlet),
|
|
'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1]}), function=nil_dirichlet),
|
|
'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1]}), function=laplace_equation),
|
|
}
|
|
|
|
# real poisson solution
|
|
def poisson_sol(self, pts):
|
|
return -(
|
|
torch.sin(pts.extract(['x'])*torch.pi) *
|
|
torch.sin(pts.extract(['y'])*torch.pi)
|
|
)/(2*torch.pi**2)
|
|
# return -(np.sin(x*np.pi)*np.sin(y*np.pi))/(2*np.pi**2)
|
|
|
|
truth_solution = poisson_sol
|