Tutorial update and small fixes * Tutorials update + Tutorial FNO * Create a metric tracker callback * Update PINN for logging * Update plotter for plotting * Small fix LabelTensor * Small fix FNO --------- Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-13-250.WIFIeduroamSTUD.units.it> Co-authored-by: Dario Coscia <dariocoscia@dhcp-176.eduroam.sissa.it>
226 lines
8.3 KiB
Python
226 lines
8.3 KiB
Python
""" Module for plotting. """
|
|
import matplotlib.pyplot as plt
|
|
import torch
|
|
from pina.callbacks import MetricTracker
|
|
|
|
from pina import LabelTensor
|
|
|
|
|
|
class Plotter:
|
|
"""
|
|
Implementation of a plotter class, for easy visualizations.
|
|
"""
|
|
|
|
def plot_samples(self, solver, variables=None):
|
|
"""
|
|
Plot the training grid samples.
|
|
|
|
:param SolverInterface solver: the SolverInterface object.
|
|
:param list(str) variables: variables to plot. If None, all variables
|
|
are plotted. If 'spatial', only spatial variables are plotted. If
|
|
'temporal', only temporal variables are plotted. Defaults to None.
|
|
|
|
.. todo::
|
|
- Add support for 3D plots.
|
|
- Fix support for more complex problems.
|
|
|
|
:Example:
|
|
>>> plotter = Plotter()
|
|
>>> plotter.plot_samples(solver=solver, variables='spatial')
|
|
"""
|
|
|
|
if variables is None:
|
|
variables = solver.problem.domain.variables
|
|
elif variables == 'spatial':
|
|
variables = solver.problem.spatial_domain.variables
|
|
elif variables == 'temporal':
|
|
variables = solver.problem.temporal_domain.variables
|
|
|
|
if len(variables) not in [1, 2, 3]:
|
|
raise ValueError
|
|
|
|
fig = plt.figure()
|
|
proj = '3d' if len(variables) == 3 else None
|
|
ax = fig.add_subplot(projection=proj)
|
|
for location in solver.problem.input_pts:
|
|
coords = solver.problem.input_pts[location].extract(
|
|
variables).T.detach()
|
|
if coords.shape[0] == 1: # 1D samples
|
|
ax.plot(coords[0], torch.zeros(coords[0].shape), '.',
|
|
label=location)
|
|
else:
|
|
ax.plot(*coords, '.', label=location)
|
|
|
|
ax.set_xlabel(variables[0])
|
|
try:
|
|
ax.set_ylabel(variables[1])
|
|
except:
|
|
pass
|
|
|
|
try:
|
|
ax.set_zlabel(variables[2])
|
|
except:
|
|
pass
|
|
|
|
plt.legend()
|
|
plt.show()
|
|
|
|
def _1d_plot(self, pts, pred, method, truth_solution=None, **kwargs):
|
|
"""Plot solution for one dimensional function
|
|
|
|
:param pts: Points to plot the solution.
|
|
:type pts: torch.Tensor
|
|
:param pred: SolverInterface solution evaluated at 'pts'.
|
|
:type pred: torch.Tensor
|
|
:param method: not used, kept for code compatibility
|
|
:type method: None
|
|
:param truth_solution: Real solution evaluated at 'pts',
|
|
defaults to None.
|
|
:type truth_solution: torch.Tensor, optional
|
|
"""
|
|
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 8))
|
|
|
|
ax.plot(pts, pred.detach(), **kwargs)
|
|
|
|
if truth_solution:
|
|
truth_output = truth_solution(pts).float()
|
|
ax.plot(pts, truth_output.detach(), **kwargs)
|
|
|
|
plt.xlabel(pts.labels[0])
|
|
plt.ylabel(pred.labels[0])
|
|
plt.show()
|
|
|
|
def _2d_plot(self, pts, pred, v, res, method, truth_solution=None,
|
|
**kwargs):
|
|
"""Plot solution for two dimensional function
|
|
|
|
:param pts: Points to plot the solution.
|
|
:type pts: torch.Tensor
|
|
:param pred: SolverInterface solution evaluated at 'pts'.
|
|
:type pred: torch.Tensor
|
|
:param method: matplotlib method to plot 2-dimensional data,
|
|
see https://matplotlib.org/stable/api/axes_api.html for
|
|
reference.
|
|
:type method: str
|
|
:param truth_solution: Real solution evaluated at 'pts',
|
|
defaults to None.
|
|
:type truth_solution: torch.Tensor, optional
|
|
"""
|
|
|
|
grids = [p_.reshape(res, res) for p_ in pts.extract(v).cpu().T]
|
|
|
|
pred_output = pred.reshape(res, res)
|
|
if truth_solution:
|
|
truth_output = truth_solution(pts).float().reshape(res, res)
|
|
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(16, 6))
|
|
|
|
cb = getattr(ax[0], method)(
|
|
*grids, pred_output.cpu().detach(), **kwargs)
|
|
fig.colorbar(cb, ax=ax[0])
|
|
cb = getattr(ax[1], method)(
|
|
*grids, truth_output.cpu().detach(), **kwargs)
|
|
fig.colorbar(cb, ax=ax[1])
|
|
cb = getattr(ax[2], method)(*grids,
|
|
(truth_output-pred_output).cpu().detach(),
|
|
**kwargs)
|
|
fig.colorbar(cb, ax=ax[2])
|
|
else:
|
|
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 6))
|
|
cb = getattr(ax, method)(
|
|
*grids, pred_output.cpu().detach(), **kwargs)
|
|
fig.colorbar(cb, ax=ax)
|
|
|
|
def plot(self, trainer, components=None, fixed_variables={}, method='contourf',
|
|
res=256, filename=None, **kwargs):
|
|
"""
|
|
Plot sample of SolverInterface output.
|
|
|
|
:param Trainer trainer: the Trainer object.
|
|
:param list(str) components: the output variable to plot. If None, all
|
|
the output variables of the problem are selected. Default value is
|
|
None.
|
|
:param dict fixed_variables: a dictionary with all the variables that
|
|
should be kept fixed during the plot. The keys of the dictionary
|
|
are the variables name whereas the values are the corresponding
|
|
values of the variables. Defaults is `dict()`.
|
|
:param {'contourf', 'pcolor'} method: the matplotlib method to use for
|
|
plotting the solution. Default is 'contourf'.
|
|
:param int res: the resolution, aka the number of points used for
|
|
plotting in each axis. Default is 256.
|
|
:param str filename: the file name to save the plot. If None, the plot
|
|
is shown using the setted matplotlib frontend. Default is None.
|
|
"""
|
|
solver = trainer.solver
|
|
if components is None:
|
|
components = [solver.problem.output_variables]
|
|
v = [
|
|
var for var in solver.problem.input_variables
|
|
if var not in fixed_variables.keys()
|
|
]
|
|
pts = solver.problem.domain.sample(res, 'grid', variables=v)
|
|
|
|
fixed_pts = torch.ones(pts.shape[0], len(fixed_variables))
|
|
fixed_pts *= torch.tensor(list(fixed_variables.values()))
|
|
fixed_pts = fixed_pts.as_subclass(LabelTensor)
|
|
fixed_pts.labels = list(fixed_variables.keys())
|
|
|
|
pts = pts.append(fixed_pts)
|
|
pts = pts.to(device=solver.device)
|
|
|
|
predicted_output = solver.forward(pts)
|
|
if isinstance(components, str):
|
|
predicted_output = predicted_output.extract(components)
|
|
elif callable(components):
|
|
predicted_output = components(predicted_output)
|
|
|
|
truth_solution = getattr(solver.problem, 'truth_solution', None)
|
|
if len(v) == 1:
|
|
self._1d_plot(pts, predicted_output, method, truth_solution,
|
|
**kwargs)
|
|
elif len(v) == 2:
|
|
self._2d_plot(pts, predicted_output, v, res, method,
|
|
truth_solution, **kwargs)
|
|
|
|
if filename:
|
|
plt.title('Output {} with parameter {}'.format(components,
|
|
fixed_variables))
|
|
plt.savefig(filename)
|
|
else:
|
|
plt.show()
|
|
|
|
def plot_loss(self, trainer, metric=None, label=None, log_scale=True):
|
|
"""
|
|
Plot the loss function values during traininig.
|
|
|
|
:param SolverInterface solver: the SolverInterface object.
|
|
:param str metric: the metric to use in the y axis.
|
|
:param str label: the label to use in the legend, defaults to None.
|
|
:param bool log_scale: If True, the y axis is in log scale. Default is
|
|
True.
|
|
"""
|
|
|
|
# check that MetricTracker has been used
|
|
list_ = [idx for idx, s in enumerate(trainer.callbacks) if isinstance(s, MetricTracker)]
|
|
if not bool(list_):
|
|
raise FileNotFoundError('MetricTracker should be used as a callback during training to'
|
|
' use this method.')
|
|
|
|
metrics = trainer.callbacks[list_[0]].metrics
|
|
|
|
if not metric:
|
|
metric = 'mean_loss'
|
|
|
|
loss = metrics[metric]
|
|
epochs = range(len(loss))
|
|
|
|
if label is not None:
|
|
plt.plot(epochs, loss, label=label)
|
|
plt.legend()
|
|
else:
|
|
plt.plot(epochs, loss)
|
|
|
|
if log_scale:
|
|
plt.yscale('log')
|
|
plt.xlabel('epoch')
|
|
plt.ylabel(metric)
|