Files
PINA/tests/test_model/test_spline.py
GiovanniCanali 4a3748c735 Revert "Improve and fix spline (#610)"
This reverts commit 0844282335.
2025-10-15 17:35:24 +02:00

82 lines
2.0 KiB
Python

import torch
import pytest
from pina.model import Spline
data = torch.rand((20, 3))
input_vars = 3
output_vars = 4
valid_args = [
{
"knots": torch.tensor([0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 3.0, 3.0]),
"control_points": torch.tensor([0.0, 0.0, 1.0, 0.0, 0.0]),
"order": 3,
},
{
"knots": torch.tensor(
[-2.0, -2.0, -2.0, -2.0, -1.0, 0.0, 1.0, 2.0, 2.0, 2.0, 2.0]
),
"control_points": torch.tensor([0.0, 0.0, 0.0, 6.0, 0.0, 0.0, 0.0]),
"order": 4,
},
# {'control_points': {'n': 5, 'dim': 1}, 'order': 2},
# {'control_points': {'n': 7, 'dim': 1}, 'order': 3}
]
def scipy_check(model, x, y):
from scipy.interpolate._bsplines import BSpline
import numpy as np
spline = BSpline(
t=model.knots.detach().numpy(),
c=model.control_points.detach().numpy(),
k=model.order - 1,
)
y_scipy = spline(x).flatten()
y = y.detach().numpy()
np.testing.assert_allclose(y, y_scipy, atol=1e-5)
@pytest.mark.parametrize("args", valid_args)
def test_constructor(args):
Spline(**args)
def test_constructor_wrong():
with pytest.raises(ValueError):
Spline()
@pytest.mark.parametrize("args", valid_args)
def test_forward(args):
min_x = args["knots"][0]
max_x = args["knots"][-1]
xi = torch.linspace(min_x, max_x, 1000)
model = Spline(**args)
yi = model(xi).squeeze()
scipy_check(model, xi, yi)
return
@pytest.mark.parametrize("args", valid_args)
def test_backward(args):
min_x = args["knots"][0]
max_x = args["knots"][-1]
xi = torch.linspace(min_x, max_x, 100)
model = Spline(**args)
yi = model(xi)
fake_loss = torch.sum(yi)
assert model.control_points.grad is None
fake_loss.backward()
assert model.control_points.grad is not None
# dim_in, dim_out = 3, 2
# fnn = FeedForward(dim_in, dim_out)
# data.requires_grad = True
# output_ = fnn(data)
# l=torch.mean(output_)
# l.backward()
# assert data._grad.shape == torch.Size([20,3])