Files
PINA/pina/solver/physic_informed_solver/self_adaptive_pinn.py
Giovanni Canali 375f7f8e2d Fixing self adaptive pinns (#469)
* fix self adaptive pinn

* clean competitive pinn
2025-03-19 17:46:36 +01:00

392 lines
14 KiB
Python

"""Module for Self-Adaptive PINN."""
import torch
from copy import deepcopy
from pina.utils import check_consistency
from pina.problem import InverseProblem
from ..solver import MultiSolverInterface
from .pinn_interface import PINNInterface
class Weights(torch.nn.Module):
"""
This class aims to implements the mask model for the
self-adaptive weights of the Self-Adaptive PINN solver.
"""
def __init__(self, func):
"""
:param torch.nn.Module func: the mask module of SAPINN.
"""
super().__init__()
check_consistency(func, torch.nn.Module)
self.sa_weights = torch.nn.Parameter(torch.Tensor())
self.func = func
def forward(self):
"""
Forward pass implementation for the mask module.
It returns the function on the weights evaluation.
:return: evaluation of self adaptive weights through the mask.
:rtype: torch.Tensor
"""
return self.func(self.sa_weights)
class SelfAdaptivePINN(PINNInterface, MultiSolverInterface):
r"""
Self Adaptive Physics Informed Neural Network (SelfAdaptivePINN)
solver class. This class implements Self-Adaptive Physics Informed Neural
Network solver, using a user specified ``model`` to solve a specific
``problem``. It can be used for solving both forward and inverse problems.
The Self Adapive Physics Informed Neural Network aims to find
the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`
of the differential problem:
.. math::
\begin{cases}
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
\mathbf{x}\in\partial\Omega
\end{cases}
integrating the pointwise loss evaluation through a mask :math:`m` and
self adaptive weights that permit to focus the loss function on
specific training samples.
The loss function to solve the problem is
.. math::
\mathcal{L}_{\rm{problem}} = \frac{1}{N} \sum_{i=1}^{N_\Omega} m
\left( \lambda_{\Omega}^{i} \right) \mathcal{L} \left( \mathcal{A}
[\mathbf{u}](\mathbf{x}) \right) + \frac{1}{N}
\sum_{i=1}^{N_{\partial\Omega}}
m \left( \lambda_{\partial\Omega}^{i} \right) \mathcal{L}
\left( \mathcal{B}[\mathbf{u}](\mathbf{x})
\right),
denoting the self adaptive weights as
:math:`\lambda_{\Omega}^1, \dots, \lambda_{\Omega}^{N_\Omega}` and
:math:`\lambda_{\partial \Omega}^1, \dots,
\lambda_{\Omega}^{N_\partial \Omega}`
for :math:`\Omega` and :math:`\partial \Omega`, respectively.
Self Adaptive Physics Informed Neural Network identifies the solution
and appropriate self adaptive weights by solving the following problem
.. math::
\min_{w} \max_{\lambda_{\Omega}^k, \lambda_{\partial \Omega}^s}
\mathcal{L} ,
where :math:`w` denotes the network parameters, and
:math:`\mathcal{L}` is a specific loss
function, default Mean Square Error:
.. math::
\mathcal{L}(v) = \| v \|^2_2.
.. seealso::
**Original reference**: McClenny, Levi D., and Ulisses M. Braga-Neto.
"Self-adaptive physics-informed neural networks."
Journal of Computational Physics 474 (2023): 111722.
DOI: `10.1016/
j.jcp.2022.111722 <https://doi.org/10.1016/j.jcp.2022.111722>`_.
"""
def __init__(
self,
problem,
model,
weight_function=torch.nn.Sigmoid(),
optimizer_model=None,
optimizer_weights=None,
scheduler_model=None,
scheduler_weights=None,
weighting=None,
loss=None,
):
"""
:param AbstractProblem problem: The formulation of the problem.
:param torch.nn.Module model: The neural network model to use for
the model.
:param torch.nn.Module weight_function: The neural network model
related to the Self-Adaptive PINN mask; default `torch.nn.Sigmoid()`
:param torch.optim.Optimizer optimizer_model: The neural network
optimizer to use for the model network; default `None`.
:param torch.optim.Optimizer optimizer_weights: The neural network
optimizer to use for mask model; default `None`.
:param torch.optim.LRScheduler scheduler_model: Learning rate scheduler
for the model; default `None`.
:param torch.optim.LRScheduler scheduler_weights: Learning rate
scheduler for the mask model; default `None`.
:param WeightingInterface weighting: The weighting schema to use;
default `None`.
:param torch.nn.Module loss: The loss function to be minimized;
default `None`.
"""
# check consistency weitghs_function
check_consistency(weight_function, torch.nn.Module)
# create models for weights
weights_dict = {}
for condition_name in problem.conditions:
weights_dict[condition_name] = Weights(weight_function)
weights_dict = torch.nn.ModuleDict(weights_dict)
super().__init__(
models=[model, weights_dict],
problem=problem,
optimizers=[optimizer_model, optimizer_weights],
schedulers=[scheduler_model, scheduler_weights],
weighting=weighting,
loss=loss,
)
# Set automatic optimization to False
self.automatic_optimization = False
self._vectorial_loss = deepcopy(self.loss)
self._vectorial_loss.reduction = "none"
def forward(self, x):
"""
Forward pass implementation for the PINN
solver. It returns the function
evaluation :math:`\mathbf{u}(\mathbf{x})` at the control points
:math:`\mathbf{x}`.
:param LabelTensor x: Input tensor for the SAPINN solver. It expects
a tensor :math:`N \\times D`, where :math:`N` the number of points
in the mesh, :math:`D` the dimension of the problem,
:return: PINN solution.
:rtype: LabelTensor
"""
return self.model(x)
def training_step(self, batch):
"""
Solver training step, overridden to perform manual optimization.
:param batch: The batch element in the dataloader.
:type batch: tuple
:return: The sum of the loss functions.
:rtype: LabelTensor
"""
# Weights optimization
self.optimizer_weights.instance.zero_grad()
loss = super().training_step(batch)
self.manual_backward(-loss)
self.optimizer_weights.instance.step()
# Model optimization
self.optimizer_model.instance.zero_grad()
loss = super().training_step(batch)
self.manual_backward(loss)
self.optimizer_model.instance.step()
return loss
def configure_optimizers(self):
"""
Optimizer configuration for the SelfAdaptive PINN solver.
:return: The optimizers and the schedulers
:rtype: tuple(list, list)
"""
# If the problem is an InverseProblem, add the unknown parameters
# to the parameters to be optimized
self.optimizer_model.hook(self.model.parameters())
self.optimizer_weights.hook(self.weights_dict.parameters())
if isinstance(self.problem, InverseProblem):
self.optimizer_model.instance.add_param_group(
{
"params": [
self._params[var]
for var in self.problem.unknown_variables
]
}
)
self.scheduler_model.hook(self.optimizer_model)
self.scheduler_weights.hook(self.optimizer_weights)
return (
[self.optimizer_model.instance, self.optimizer_weights.instance],
[self.scheduler_model.instance, self.scheduler_weights.instance],
)
def on_train_batch_end(self, outputs, batch, batch_idx):
"""
This method is called at the end of each training batch, and ovverides
the PytorchLightining implementation for logging the checkpoints.
:param torch.Tensor outputs: The output from the model for the
current batch.
:param tuple batch: The current batch of data.
:param int batch_idx: The index of the current batch.
:return: Whatever is returned by the parent
method ``on_train_batch_end``.
:rtype: Any
"""
# increase by one the counter of optimization to save loggers
(
self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed
) += 1
return super().on_train_batch_end(outputs, batch, batch_idx)
def on_train_start(self):
"""
This method is called at the start of the training for setting
the self adaptive weights as parameters of the mask model.
:return: Whatever is returned by the parent
method ``on_train_start``.
:rtype: Any
"""
if self.trainer.batch_size is not None:
raise NotImplementedError(
"SelfAdaptivePINN only works with full "
"batch size, set batch_size=None inside "
"the Trainer to use the solver."
)
device = torch.device(
self.trainer._accelerator_connector._accelerator_flag
)
# Initialize the self adaptive weights only for training points
for (
condition_name,
tensor,
) in self.trainer.data_module.train_dataset.input_points.items():
self.weights_dict[condition_name].sa_weights.data = torch.rand(
(tensor.shape[0], 1), device=device
)
return super().on_train_start()
def on_load_checkpoint(self, checkpoint):
"""
Override the Pytorch Lightning ``on_load_checkpoint`` to handle
checkpoints for Self-Adaptive Weights. This method should not be
overridden if not intentionally.
:param dict checkpoint: Pytorch Lightning checkpoint dict.
"""
# First initialize self-adaptive weights with correct shape,
# then load the values from the checkpoint.
for condition_name, _ in self.problem.input_pts.items():
shape = checkpoint["state_dict"][
f"_pina_models.1.{condition_name}.sa_weights"
].shape
self.weights_dict[condition_name].sa_weights.data = torch.rand(
shape
)
return super().on_load_checkpoint(checkpoint)
def loss_phys(self, samples, equation):
"""
Computation of the physical loss for SelfAdaptive PINN solver.
:param LabelTensor samples: Input samples to evaluate the physics loss.
:param EquationInterface equation: the governing equation representing
the physics.
:return: tuple with weighted and not weighted scalar loss
:rtype: List[LabelTensor, LabelTensor]
"""
residual = self.compute_residual(samples, equation)
weights = self.weights_dict[self.current_condition_name].forward()
loss_value = self._vectorial_loss(
torch.zeros_like(residual, requires_grad=True), residual
)
return self._vect_to_scalar(weights * loss_value)
def _vect_to_scalar(self, loss_value):
"""
Elaboration of the pointwise loss through the mask model and the
self adaptive weights
:param LabelTensor loss_value: the matrix of pointwise loss
:return: the scalar loss
:rtype LabelTensor
"""
if self.loss.reduction == "mean":
ret = torch.mean(loss_value)
elif self.loss.reduction == "sum":
ret = torch.sum(loss_value)
else:
raise RuntimeError(
f"Invalid reduction, got {self.loss.reduction} "
"but expected mean or sum."
)
return ret
@property
def model(self):
"""
Return the mask models associate to the application of
the mask to the self adaptive weights for each loss that
compones the global loss of the problem.
:return: The ModuleDict for mask models.
:rtype: torch.nn.ModuleDict
"""
return self.models[0]
@property
def weights_dict(self):
"""
Return the mask models associate to the application of
the mask to the self adaptive weights for each loss that
compones the global loss of the problem.
:return: The ModuleDict for mask models.
:rtype: torch.nn.ModuleDict
"""
return self.models[1]
@property
def scheduler_model(self):
"""
Returns the scheduler associated with the neural network model.
:return: The scheduler for the neural network model.
:rtype: torch.optim.lr_scheduler._LRScheduler
"""
return self.schedulers[0]
@property
def scheduler_weights(self):
"""
Returns the scheduler associated with the mask model (if applicable).
:return: The scheduler for the mask model.
:rtype: torch.optim.lr_scheduler._LRScheduler
"""
return self.schedulers[1]
@property
def optimizer_model(self):
"""
Returns the optimizer associated with the neural network model.
:return: The optimizer for the neural network model.
:rtype: torch.optim.Optimizer
"""
return self.optimizers[0]
@property
def optimizer_weights(self):
"""
Returns the optimizer associated with the mask model (if applicable).
:return: The optimizer for the mask model.
:rtype: torch.optim.Optimizer
"""
return self.optimizers[1]