* modify examples/problems * modify tutorials --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it> Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
65 lines
2.0 KiB
Python
65 lines
2.0 KiB
Python
""" Run PINA on Burgers equation. """
|
|
|
|
import argparse
|
|
import torch
|
|
from torch.nn import Softplus
|
|
|
|
from pina import LabelTensor
|
|
from pina.model import FeedForward
|
|
from pina.solvers import PINN
|
|
from pina.plotter import Plotter
|
|
from pina.trainer import Trainer
|
|
from problems.wave import Wave
|
|
|
|
class HardMLP(torch.nn.Module):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__()
|
|
|
|
self.layers = FeedForward(**kwargs)
|
|
|
|
# here in the foward we implement the hard constraints
|
|
def forward(self, x):
|
|
hard_space = x.extract(['x'])*(1-x.extract(['x']))*x.extract(['y'])*(1-x.extract(['y']))
|
|
hard_t = torch.sin(torch.pi*x.extract(['x'])) * torch.sin(torch.pi*x.extract(['y'])) * torch.cos(torch.sqrt(torch.tensor(2.))*torch.pi*x.extract(['t']))
|
|
return hard_space * self.layers(x) * x.extract(['t']) + hard_t
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description="Run PINA")
|
|
parser.add_argument("--load", help="directory to save or load file", type=str)
|
|
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
|
|
args = parser.parse_args()
|
|
|
|
|
|
# create problem and discretise domain
|
|
wave_problem = Wave()
|
|
wave_problem.discretise_domain(1000, 'random', locations=['D', 't0', 'gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
|
|
|
# create model
|
|
model = HardMLP(
|
|
layers=[40, 40, 40],
|
|
output_dimensions=len(wave_problem.output_variables),
|
|
input_dimensions=len(wave_problem.input_variables),
|
|
func=Softplus
|
|
)
|
|
|
|
# create solver
|
|
pinn = PINN(
|
|
problem=wave_problem,
|
|
model=model,
|
|
optimizer_kwargs={'lr' : 0.006}
|
|
)
|
|
|
|
# create trainer
|
|
directory = 'pina.wave'
|
|
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
|
|
|
|
|
|
if args.load:
|
|
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=wave_problem, model=model)
|
|
plotter = Plotter()
|
|
plotter.plot(pinn)
|
|
else:
|
|
trainer.train()
|