Files
PINA/tests/test_model/test_graph_neural_operator.py
gc031298 ed0a8bd5e7 renaming
2025-03-19 17:46:36 +01:00

130 lines
4.2 KiB
Python

import pytest
import torch
from pina.graph import KNNGraph
from pina.model import GraphNeuralOperator
from torch_geometric.data import Batch
x = [torch.rand(100, 6) for _ in range(10)]
pos = [torch.rand(100, 3) for _ in range(10)]
graph = KNNGraph(x=x, pos=pos, build_edge_attr=True, k=6)
input_ = Batch.from_data_list(graph.data)
@pytest.mark.parametrize(
"shared_weights",
[
True,
False
]
)
def test_constructor(shared_weights):
lifting_operator = torch.nn.Linear(6, 16)
projection_operator = torch.nn.Linear(16, 3)
GraphNeuralOperator(lifting_operator=lifting_operator,
projection_operator=projection_operator,
edge_features=3,
internal_layers=[16, 16],
shared_weights=shared_weights)
GraphNeuralOperator(lifting_operator=lifting_operator,
projection_operator=projection_operator,
edge_features=3,
inner_size=16,
internal_n_layers=10,
shared_weights=shared_weights)
int_func = torch.nn.Softplus
ext_func = torch.nn.ReLU
GraphNeuralOperator(lifting_operator=lifting_operator,
projection_operator=projection_operator,
edge_features=3,
internal_n_layers=10,
shared_weights=shared_weights,
internal_func=int_func,
external_func=ext_func)
@pytest.mark.parametrize(
"shared_weights",
[
True,
False
]
)
def test_forward_1(shared_weights):
lifting_operator = torch.nn.Linear(6, 16)
projection_operator = torch.nn.Linear(16, 3)
model = GraphNeuralOperator(lifting_operator=lifting_operator,
projection_operator=projection_operator,
edge_features=3,
internal_layers=[16, 16],
shared_weights=shared_weights)
output_ = model(input_)
assert output_.shape == torch.Size([1000, 3])
@pytest.mark.parametrize(
"shared_weights",
[
True,
False
]
)
def test_forward_2(shared_weights):
lifting_operator = torch.nn.Linear(6, 16)
projection_operator = torch.nn.Linear(16, 3)
model = GraphNeuralOperator(lifting_operator=lifting_operator,
projection_operator=projection_operator,
edge_features=3,
inner_size=32,
internal_n_layers=2,
shared_weights=shared_weights)
output_ = model(input_)
assert output_.shape == torch.Size([1000, 3])
@pytest.mark.parametrize(
"shared_weights",
[
True,
False
]
)
def test_backward(shared_weights):
lifting_operator = torch.nn.Linear(6, 16)
projection_operator = torch.nn.Linear(16, 3)
model = GraphNeuralOperator(lifting_operator=lifting_operator,
projection_operator=projection_operator,
edge_features=3,
internal_layers=[16, 16],
shared_weights=shared_weights)
input_.x.requires_grad = True
output_ = model(input_)
l = torch.mean(output_)
l.backward()
assert input_.x.grad.shape == torch.Size([1000, 6])
@pytest.mark.parametrize(
"shared_weights",
[
True,
False
]
)
def test_backward_2(shared_weights):
lifting_operator = torch.nn.Linear(6, 16)
projection_operator = torch.nn.Linear(16, 3)
model = GraphNeuralOperator(lifting_operator=lifting_operator,
projection_operator=projection_operator,
edge_features=3,
inner_size=32,
internal_n_layers=2,
shared_weights=shared_weights)
input_.x.requires_grad = True
output_ = model(input_)
l = torch.mean(output_)
l.backward()
assert input_.x.grad.shape == torch.Size([1000, 6])