Files
PINA/tests/test_weighting/test_standard_weighting.py
Dario Coscia df673cad4e Renaming
* solvers -> solver
* adaptive_functions -> adaptive_function
* callbacks -> callback
* operators -> operator
* pinns -> physics_informed_solver
* layers -> block
2025-03-19 17:46:36 +01:00

42 lines
1.5 KiB
Python

import pytest
import torch
from pina import Trainer
from pina.solver import PINN
from pina.model import FeedForward
from pina.problem.zoo import Poisson2DSquareProblem
from pina.loss import ScalarWeighting
problem = Poisson2DSquareProblem()
model = FeedForward(len(problem.input_variables), len(problem.output_variables))
condition_names = problem.conditions.keys()
print(problem.conditions.keys())
@pytest.mark.parametrize("weights",
[1, 1., dict(zip(condition_names, [1]*len(condition_names)))])
def test_constructor(weights):
ScalarWeighting(weights=weights)
@pytest.mark.parametrize("weights", ['a', [1,2,3]])
def test_wrong_constructor(weights):
with pytest.raises(ValueError):
ScalarWeighting(weights=weights)
@pytest.mark.parametrize("weights",
[1, 1., dict(zip(condition_names, [1]*len(condition_names)))])
def test_aggregate(weights):
weighting = ScalarWeighting(weights=weights)
losses = dict(zip(condition_names, [torch.randn(1) for _ in range(len(condition_names))]))
weighting.aggregate(losses=losses)
@pytest.mark.parametrize("weights",
[1, 1., dict(zip(condition_names, [1]*len(condition_names)))])
def test_train_aggregation(weights):
weighting = ScalarWeighting(weights=weights)
problem.discretise_domain(50)
solver = PINN(
problem=problem,
model=model,
weighting=weighting)
trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu')
trainer.train()