Files
PINA/pina/model/spline.py
Nicola Demo 4c5cb8f681 add spline model (#321)
* add spline model
* add tests for splines
* rst files for splines

---------

Co-authored-by: AleDinve <giuseppealessio.d@student.unisi.it>
Co-authored-by: dario-coscia <dariocos99@gmail.com>
2024-09-27 10:05:18 +02:00

166 lines
5.1 KiB
Python

"""Module for Spline model"""
import torch
import torch.nn as nn
from ..utils import check_consistency
class Spline(torch.nn.Module):
def __init__(self, order=4, knots=None, control_points=None) -> None:
"""
Spline model.
:param int order: the order of the spline.
:param torch.Tensor knots: the knot vector.
:param torch.Tensor control_points: the control points.
"""
super().__init__()
check_consistency(order, int)
if order < 0:
raise ValueError("Spline order cannot be negative.")
if knots is None and control_points is None:
raise ValueError("Knots and control points cannot be both None.")
self.order = order
self.k = order - 1
if knots is not None and control_points is not None:
self.knots = knots
self.control_points = control_points
elif knots is not None:
print('Warning: control points will be initialized automatically.')
print(' experimental feature')
self.knots = knots
n = len(knots) - order
self.control_points = torch.nn.Parameter(
torch.zeros(n), requires_grad=True)
elif control_points is not None:
print('Warning: knots will be initialized automatically.')
print(' experimental feature')
self.control_points = control_points
n = len(self.control_points)-1
self.knots = {
'type': 'auto',
'min': 0,
'max': 1,
'n': n+2+self.order}
else:
raise ValueError(
"Knots and control points cannot be both None."
)
if self.knots.ndim != 1:
raise ValueError("Knot vector must be one-dimensional.")
def basis(self, x, k, i, t):
'''
Recursive function to compute the basis functions of the spline.
:param torch.Tensor x: points to be evaluated.
:param int k: spline degree
:param int i: the index of the interval
:param torch.Tensor t: vector of knots
:return: the basis functions evaluated at x
:rtype: torch.Tensor
'''
if k == 0:
a = torch.where(torch.logical_and(t[i] <= x, x < t[i+1]), 1.0, 0.0)
if i == len(t) - self.order - 1:
a = torch.where(x == t[-1], 1.0, a)
a.requires_grad_(True)
return a
if t[i+k] == t[i]:
c1 = torch.tensor([0.0]*len(x), requires_grad=True)
else:
c1 = (x - t[i])/(t[i+k] - t[i]) * self.basis(x, k-1, i, t)
if t[i+k+1] == t[i+1]:
c2 = torch.tensor([0.0]*len(x), requires_grad=True)
else:
c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * self.basis(x, k-1, i+1, t)
return c1 + c2
@property
def control_points(self):
return self._control_points
@control_points.setter
def control_points(self, value):
if isinstance(value, dict):
if 'n' not in value:
raise ValueError('Invalid value for control_points')
n = value['n']
dim = value.get('dim', 1)
value = torch.zeros(n, dim)
if not isinstance(value, torch.Tensor):
raise ValueError('Invalid value for control_points')
self._control_points = torch.nn.Parameter(value, requires_grad=True)
@property
def knots(self):
return self._knots
@knots.setter
def knots(self, value):
if isinstance(value, dict):
type_ = value.get('type', 'auto')
min_ = value.get('min', 0)
max_ = value.get('max', 1)
n = value.get('n', 10)
if type_ == 'uniform':
value = torch.linspace(min_, max_, n + self.k + 1)
elif type_ == 'auto':
initial_knots = torch.ones(self.order+1)*min_
final_knots = torch.ones(self.order+1)*max_
if n < self.order + 1:
value = torch.concatenate((initial_knots, final_knots))
elif n - 2*self.order + 1 == 1:
value = torch.Tensor([(max_ + min_)/2])
else:
value = torch.linspace(min_, max_, n - 2*self.order - 1)
value = torch.concatenate(
(
initial_knots, value, final_knots
)
)
if not isinstance(value, torch.Tensor):
raise ValueError('Invalid value for knots')
self._knots = value
def forward(self, x_):
"""
Forward pass of the spline model.
:param torch.Tensor x_: points to be evaluated.
:return: the spline evaluated at x_
:rtype: torch.Tensor
"""
t = self.knots
k = self.k
c = self.control_points
basis = map(lambda i: self.basis(x_, k, i, t)[:, None], range(len(c)))
y = (torch.cat(list(basis), dim=1) * c).sum(axis=1)
return y