* Adding Equations, solving typos * improve _code.rst * the team rst and restuctore index.rst * fixing errors --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
49 lines
1.4 KiB
Python
49 lines
1.4 KiB
Python
import torch
|
|
import pytest
|
|
|
|
from pina.loss import *
|
|
|
|
input = torch.tensor([[3.], [1.], [-8.]])
|
|
target = torch.tensor([[6.], [4.], [2.]])
|
|
available_reductions = ['str', 'mean', 'none']
|
|
|
|
|
|
def test_LpLoss_constructor():
|
|
# test reduction
|
|
for reduction in available_reductions:
|
|
LpLoss(reduction=reduction)
|
|
# test p
|
|
for p in [float('inf'), -float('inf'), 1, 10, -8]:
|
|
LpLoss(p=p)
|
|
|
|
|
|
def test_LpLoss_forward():
|
|
# l2 loss
|
|
loss = LpLoss(p=2, reduction='mean')
|
|
l2_loss = torch.mean(torch.sqrt((input - target).pow(2)))
|
|
assert loss(input, target) == l2_loss
|
|
# l1 loss
|
|
loss = LpLoss(p=1, reduction='sum')
|
|
l1_loss = torch.sum(torch.abs(input - target))
|
|
assert loss(input, target) == l1_loss
|
|
|
|
|
|
def test_LpRelativeLoss_constructor():
|
|
# test reduction
|
|
for reduction in available_reductions:
|
|
LpLoss(reduction=reduction, relative=True)
|
|
# test p
|
|
for p in [float('inf'), -float('inf'), 1, 10, -8]:
|
|
LpLoss(p=p, relative=True)
|
|
|
|
|
|
def test_LpRelativeLoss_forward():
|
|
# l2 relative loss
|
|
loss = LpLoss(p=2, reduction='mean', relative=True)
|
|
l2_loss = torch.sqrt((input - target).pow(2)) / torch.sqrt(input.pow(2))
|
|
assert loss(input, target) == torch.mean(l2_loss)
|
|
# l1 relative loss
|
|
loss = LpLoss(p=1, reduction='sum', relative=True)
|
|
l1_loss = torch.abs(input - target) / torch.abs(input)
|
|
assert loss(input, target) == torch.sum(l1_loss)
|