Files
PINA/tests/test_blocks/test_fourier.py
Dario Coscia df673cad4e Renaming
* solvers -> solver
* adaptive_functions -> adaptive_function
* callbacks -> callback
* operators -> operator
* pinns -> physics_informed_solver
* layers -> block
2025-03-19 17:46:36 +01:00

85 lines
2.6 KiB
Python

from pina.model.block import FourierBlock1D, FourierBlock2D, FourierBlock3D
import torch
input_numb_fields = 3
output_numb_fields = 4
batch = 5
def test_constructor_1d():
FourierBlock1D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=5)
def test_forward_1d():
sconv = FourierBlock1D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=4)
x = torch.rand(batch, input_numb_fields, 10)
sconv(x)
def test_backward_1d():
sconv = FourierBlock1D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=4)
x = torch.rand(batch, input_numb_fields, 10)
x.requires_grad = True
sconv(x)
l = torch.mean(sconv(x))
l.backward()
assert x._grad.shape == torch.Size([5, 3, 10])
def test_constructor_2d():
FourierBlock2D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4])
def test_forward_2d():
sconv = FourierBlock2D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4])
x = torch.rand(batch, input_numb_fields, 10, 10)
sconv(x)
def test_backward_2d():
sconv = FourierBlock2D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4])
x = torch.rand(batch, input_numb_fields, 10, 10)
x.requires_grad = True
sconv(x)
l = torch.mean(sconv(x))
l.backward()
assert x._grad.shape == torch.Size([5, 3, 10, 10])
def test_constructor_3d():
FourierBlock3D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4, 4])
def test_forward_3d():
sconv = FourierBlock3D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4, 4])
x = torch.rand(batch, input_numb_fields, 10, 10, 10)
sconv(x)
def test_backward_3d():
sconv = FourierBlock3D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4, 4])
x = torch.rand(batch, input_numb_fields, 10, 10, 10)
x.requires_grad = True
sconv(x)
l = torch.mean(sconv(x))
l.backward()
assert x._grad.shape == torch.Size([5, 3, 10, 10, 10])