392 lines
14 KiB
Python
392 lines
14 KiB
Python
"""
|
|
This module contains the PinaDataModule class, which extends the
|
|
LightningDataModule class to allow proper creation and management of
|
|
different types of Datasets defined in PINA.
|
|
"""
|
|
|
|
import warnings
|
|
from lightning.pytorch import LightningDataModule
|
|
import torch
|
|
from ..label_tensor import LabelTensor
|
|
from .dataset import PinaDatasetFactory
|
|
from .dataloader import PinaDataLoader
|
|
|
|
|
|
class PinaDataModule(LightningDataModule):
|
|
"""
|
|
This class extends :class:`~lightning.pytorch.core.LightningDataModule`,
|
|
allowing proper creation and management of different types of datasets
|
|
defined in PINA.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
problem,
|
|
train_size=0.7,
|
|
test_size=0.2,
|
|
val_size=0.1,
|
|
batch_size=None,
|
|
shuffle=True,
|
|
common_batch_size=True,
|
|
separate_conditions=False,
|
|
automatic_batching=None,
|
|
num_workers=0,
|
|
pin_memory=False,
|
|
):
|
|
"""
|
|
Initialize the object and creating datasets based on the input problem.
|
|
|
|
:param AbstractProblem problem: The problem containing the data on which
|
|
to create the datasets and dataloaders.
|
|
:param float train_size: Fraction of elements in the training split. It
|
|
must be in the range [0, 1].
|
|
:param float test_size: Fraction of elements in the test split. It must
|
|
be in the range [0, 1].
|
|
:param float val_size: Fraction of elements in the validation split. It
|
|
must be in the range [0, 1].
|
|
:param int batch_size: The batch size used for training. If ``None``,
|
|
the entire dataset is returned in a single batch.
|
|
Default is ``None``.
|
|
:param bool shuffle: Whether to shuffle the dataset before splitting.
|
|
Default ``True``.
|
|
:param bool common_batch_size: If ``True``, the same batch size is used
|
|
for all conditions. If ``False``, each condition can have its own
|
|
batch size, proportional to the size of the dataset in that
|
|
condition. Default is ``True``.
|
|
:param bool separate_conditions: If ``True``, dataloaders for each
|
|
condition are iterated separately. Default is ``False``.
|
|
:param automatic_batching: If ``True``, automatic PyTorch batching
|
|
is performed, which consists of extracting one element at a time
|
|
from the dataset and collating them into a batch. This is useful
|
|
when the dataset is too large to fit into memory. On the other hand,
|
|
if ``False``, the items are retrieved from the dataset all at once
|
|
avoind the overhead of collating them into a batch and reducing the
|
|
``__getitem__`` calls to the dataset. This is useful when the
|
|
dataset fits into memory. Avoid using automatic batching when
|
|
``batch_size`` is large. Default is ``False``.
|
|
:param int num_workers: Number of worker threads for data loading.
|
|
Default ``0`` (serial loading).
|
|
:param bool pin_memory: Whether to use pinned memory for faster data
|
|
transfer to GPU. Default ``False``.
|
|
|
|
:raises ValueError: If at least one of the splits is negative.
|
|
:raises ValueError: If the sum of the splits is different from 1.
|
|
|
|
.. seealso::
|
|
For more information on multi-process data loading, see:
|
|
https://pytorch.org/docs/stable/data.html#multi-process-data-loading
|
|
|
|
For details on memory pinning, see:
|
|
https://pytorch.org/docs/stable/data.html#memory-pinning
|
|
"""
|
|
super().__init__()
|
|
|
|
# Store fixed attributes
|
|
self.batch_size = batch_size
|
|
self.shuffle = shuffle
|
|
self.common_batch_size = common_batch_size
|
|
self.separate_conditions = separate_conditions
|
|
self.automatic_batching = automatic_batching
|
|
|
|
# If batch size is None, num_workers has no effect
|
|
if batch_size is None and num_workers != 0:
|
|
warnings.warn(
|
|
"Setting num_workers when batch_size is None has no effect on "
|
|
"the DataLoading process."
|
|
)
|
|
self.num_workers = 0
|
|
else:
|
|
self.num_workers = num_workers
|
|
|
|
# If batch size is None, pin_memory has no effect
|
|
if batch_size is None and pin_memory:
|
|
warnings.warn(
|
|
"Setting pin_memory to True has no effect when "
|
|
"batch_size is None."
|
|
)
|
|
self.pin_memory = False
|
|
else:
|
|
self.pin_memory = pin_memory
|
|
|
|
# Collect data
|
|
problem.collect_data()
|
|
|
|
# Check if the splits are correct
|
|
self._check_slit_sizes(train_size, test_size, val_size)
|
|
|
|
# Split input data into subsets
|
|
splits_dict = {}
|
|
if train_size > 0:
|
|
splits_dict["train"] = train_size
|
|
self.train_dataset = None
|
|
else:
|
|
# Use the super method to create the train dataloader which
|
|
# raises NotImplementedError
|
|
self.train_dataloader = super().train_dataloader
|
|
if test_size > 0:
|
|
splits_dict["test"] = test_size
|
|
self.test_dataset = None
|
|
else:
|
|
# Use the super method to create the train dataloader which
|
|
# raises NotImplementedError
|
|
self.test_dataloader = super().test_dataloader
|
|
if val_size > 0:
|
|
splits_dict["val"] = val_size
|
|
self.val_dataset = None
|
|
else:
|
|
# Use the super method to create the train dataloader which
|
|
# raises NotImplementedError
|
|
self.val_dataloader = super().val_dataloader
|
|
|
|
self.data_splits = self._create_splits(
|
|
problem.collected_data, splits_dict
|
|
)
|
|
self.transfer_batch_to_device = self._transfer_batch_to_device
|
|
|
|
def setup(self, stage=None):
|
|
"""
|
|
Create the dataset objects for the given stage.
|
|
If the stage is "fit", the training and validation datasets are created.
|
|
If the stage is "test", the testing dataset is created.
|
|
|
|
:param str stage: The stage for which to perform the dataset setup.
|
|
|
|
:raises ValueError: If the stage is neither "fit" nor "test".
|
|
"""
|
|
if stage == "fit" or stage is None:
|
|
self.train_dataset = PinaDatasetFactory(
|
|
self.data_splits["train"],
|
|
automatic_batching=self.automatic_batching,
|
|
)
|
|
if "val" in self.data_splits.keys():
|
|
self.val_dataset = PinaDatasetFactory(
|
|
self.data_splits["val"],
|
|
automatic_batching=self.automatic_batching,
|
|
)
|
|
elif stage == "test":
|
|
self.test_dataset = PinaDatasetFactory(
|
|
self.data_splits["test"],
|
|
automatic_batching=self.automatic_batching,
|
|
)
|
|
else:
|
|
raise ValueError("stage must be either 'fit' or 'test'.")
|
|
|
|
@staticmethod
|
|
def _split_condition(single_condition_dict, splits_dict):
|
|
"""
|
|
Split the condition into different stages.
|
|
|
|
:param dict single_condition_dict: The condition to be split.
|
|
:param dict splits_dict: The dictionary containing the number of
|
|
elements in each stage.
|
|
:return: A dictionary containing the split condition.
|
|
:rtype: dict
|
|
"""
|
|
|
|
len_condition = len(single_condition_dict["input"])
|
|
|
|
lengths = [
|
|
int(len_condition * length) for length in splits_dict.values()
|
|
]
|
|
|
|
remainder = len_condition - sum(lengths)
|
|
for i in range(remainder):
|
|
lengths[i % len(lengths)] += 1
|
|
|
|
splits_dict = {
|
|
k: max(1, v) for k, v in zip(splits_dict.keys(), lengths)
|
|
}
|
|
to_return_dict = {}
|
|
offset = 0
|
|
|
|
for stage, stage_len in splits_dict.items():
|
|
to_return_dict[stage] = {
|
|
k: v[offset : offset + stage_len]
|
|
for k, v in single_condition_dict.items()
|
|
if k != "equation"
|
|
# Equations are NEVER dataloaded
|
|
}
|
|
if offset + stage_len >= len_condition:
|
|
offset = len_condition - 1
|
|
continue
|
|
offset += stage_len
|
|
return to_return_dict
|
|
|
|
def _create_splits(self, collector, splits_dict):
|
|
"""
|
|
Create the dataset objects putting data in the correct splits.
|
|
|
|
:param Collector collector: The collector object containing the data.
|
|
:param dict splits_dict: The dictionary containing the number of
|
|
elements in each stage.
|
|
:return: The dictionary containing the dataset objects.
|
|
:rtype: dict
|
|
"""
|
|
|
|
# ----------- Auxiliary function ------------
|
|
def _apply_shuffle(condition_dict, len_data):
|
|
idx = torch.randperm(len_data)
|
|
for k, v in condition_dict.items():
|
|
if k == "equation":
|
|
continue
|
|
if isinstance(v, list):
|
|
condition_dict[k] = [v[i] for i in idx]
|
|
elif isinstance(v, LabelTensor):
|
|
condition_dict[k] = LabelTensor(v.tensor[idx], v.labels)
|
|
elif isinstance(v, torch.Tensor):
|
|
condition_dict[k] = v[idx]
|
|
else:
|
|
raise ValueError(f"Data type {type(v)} not supported")
|
|
|
|
# ----------- End auxiliary function ------------
|
|
|
|
split_names = list(splits_dict.keys())
|
|
dataset_dict = {name: {} for name in split_names}
|
|
for (
|
|
condition_name,
|
|
condition_dict,
|
|
) in collector.items():
|
|
len_data = len(condition_dict["input"])
|
|
if self.shuffle:
|
|
_apply_shuffle(condition_dict, len_data)
|
|
for key, data in self._split_condition(
|
|
condition_dict, splits_dict
|
|
).items():
|
|
dataset_dict[key].update({condition_name: data})
|
|
return dataset_dict
|
|
|
|
def _create_dataloader(self, dataset):
|
|
""" "
|
|
Create the dataloader for the given split.
|
|
|
|
:param str split: The split on which to create the dataloader.
|
|
:param str dataset: The dataset to be used for the dataloader.
|
|
:return: The dataloader for the given split.
|
|
:rtype: torch.utils.data.DataLoader
|
|
"""
|
|
# Suppress the warning about num_workers.
|
|
# In many cases, especially for PINNs,
|
|
# serial data loading can outperform parallel data loading.
|
|
warnings.filterwarnings(
|
|
"ignore",
|
|
message=(
|
|
"The '(train|val|test)_dataloader' does not have many workers "
|
|
"which may be a bottleneck."
|
|
),
|
|
module="lightning.pytorch.trainer.connectors.data_connector",
|
|
)
|
|
return PinaDataLoader(
|
|
dataset,
|
|
batch_size=self.batch_size,
|
|
shuffle=self.shuffle,
|
|
num_workers=self.num_workers,
|
|
common_batch_size=self.common_batch_size,
|
|
separate_conditions=self.separate_conditions,
|
|
)
|
|
|
|
def val_dataloader(self):
|
|
"""
|
|
Create the validation dataloader.
|
|
|
|
:return: The validation dataloader
|
|
:rtype: torch.utils.data.DataLoader
|
|
"""
|
|
return self._create_dataloader(self.val_dataset)
|
|
|
|
def train_dataloader(self):
|
|
"""
|
|
Create the training dataloader
|
|
|
|
:return: The training dataloader
|
|
:rtype: torch.utils.data.DataLoader
|
|
"""
|
|
return self._create_dataloader(self.train_dataset)
|
|
|
|
def test_dataloader(self):
|
|
"""
|
|
Create the testing dataloader
|
|
|
|
:return: The testing dataloader
|
|
:rtype: torch.utils.data.DataLoader
|
|
"""
|
|
return self._create_dataloader(self.test_dataset)
|
|
|
|
@staticmethod
|
|
def _transfer_batch_to_device_dummy(batch, device, dataloader_idx):
|
|
"""
|
|
Transfer the batch to the device. This method is used when the batch
|
|
size is None: batch has already been transferred to the device.
|
|
|
|
:param list[tuple] batch: List of tuple where the first element of the
|
|
tuple is the condition name and the second element is the data.
|
|
:param torch.device device: Device to which the batch is transferred.
|
|
:param int dataloader_idx: Index of the dataloader.
|
|
:return: The batch transferred to the device.
|
|
:rtype: list[tuple]
|
|
"""
|
|
|
|
return batch
|
|
|
|
def _transfer_batch_to_device(self, batch, device, dataloader_idx):
|
|
"""
|
|
Transfer the batch to the device. This method is called in the
|
|
training loop and is used to transfer the batch to the device.
|
|
|
|
:param dict batch: The batch to be transferred to the device.
|
|
:param torch.device device: The device to which the batch is
|
|
transferred.
|
|
:param int dataloader_idx: The index of the dataloader.
|
|
:return: The batch transferred to the device.
|
|
:rtype: list[tuple]
|
|
"""
|
|
|
|
batch = [
|
|
(
|
|
k,
|
|
super(LightningDataModule, self).transfer_batch_to_device(
|
|
v, device, dataloader_idx
|
|
),
|
|
)
|
|
for k, v in batch.items()
|
|
]
|
|
|
|
return batch
|
|
|
|
@staticmethod
|
|
def _check_slit_sizes(train_size, test_size, val_size):
|
|
"""
|
|
Check if the splits are correct. The splits sizes must be positive and
|
|
the sum of the splits must be 1.
|
|
|
|
:param float train_size: The size of the training split.
|
|
:param float test_size: The size of the testing split.
|
|
:param float val_size: The size of the validation split.
|
|
|
|
:raises ValueError: If at least one of the splits is negative.
|
|
:raises ValueError: If the sum of the splits is different
|
|
from 1.
|
|
"""
|
|
|
|
if train_size < 0 or test_size < 0 or val_size < 0:
|
|
raise ValueError("The splits must be positive")
|
|
if abs(train_size + test_size + val_size - 1) > 1e-6:
|
|
raise ValueError("The sum of the splits must be 1")
|
|
|
|
@property
|
|
def input(self):
|
|
"""
|
|
Return all the input points coming from all the datasets.
|
|
|
|
:return: The input points for training.
|
|
:rtype: dict
|
|
"""
|
|
|
|
to_return = {}
|
|
if hasattr(self, "train_dataset") and self.train_dataset is not None:
|
|
to_return["train"] = self.train_dataset.input
|
|
if hasattr(self, "val_dataset") and self.val_dataset is not None:
|
|
to_return["val"] = self.val_dataset.input
|
|
if hasattr(self, "test_dataset") and self.test_dataset is not None:
|
|
to_return["test"] = self.test_dataset.input
|
|
return to_return
|