Files
PINA/examples/run_first_order_ode.py
2023-11-17 09:51:29 +01:00

68 lines
1.8 KiB
Python

import argparse
from torch.nn import Softplus
from pina.model import FeedForward
from pina import Condition, CartesianDomain, Plotter, PINN
class FirstOrderODE(SpatialProblem):
x_rng = [0, 5]
output_variables = ['y']
spatial_domain = CartesianDomain({'x': x_rng})
def ode(input_, output_):
y = output_
x = input_
return grad(y, x) + y - x
def fixed(input_, output_):
exp_value = 1.
return output_ - exp_value
def solution(self, input_):
x = input_
return x - 1.0 + 2*torch.exp(-x)
conditions = {
'bc': Condition(CartesianDomain({'x': x_rng[0]}), fixed),
'dd': Condition(CartesianDomain({'x': x_rng}), ode),
}
truth_solution = solution
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-s", "-save", action="store_true")
group.add_argument("-l", "-load", action="store_true")
parser.add_argument("id_run", help="number of run", type=int)
args = parser.parse_args()
# define Problem + Model + PINN
problem = FirstOrderODE()
model = FeedForward(
layers=[4]*2,
output_variables=problem.output_variables,
input_variables=problem.input_variables,
func=Softplus,
)
pinn = PINN(problem, model, lr=0.03, error_norm='mse', regularizer=0)
if args.s:
pinn.span_pts(
{'variables': ['x'], 'mode': 'grid', 'n': 1}, locations=['bc'])
pinn.span_pts(
{'variables': ['x'], 'mode': 'grid', 'n': 30}, locations=['dd'])
Plotter().plot_samples(pinn, ['x'])
pinn.train(1200, 50)
pinn.save_state('pina.ode')
else:
pinn.load_state('pina.ode')
plotter = Plotter()
plotter.plot(pinn, components=['y'])