Files
PINA/tests/test_model/test_mionet.py
Filippo Olivo 4177bfbb50 Fix Codacy Warnings (#477)
---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
2025-03-19 17:48:18 +01:00

101 lines
4.1 KiB
Python

import pytest
import torch
from pina import LabelTensor
from pina.model import MIONet
from pina.model import FeedForward
data = torch.rand((20, 3))
input_vars = ["a", "b", "c"]
input_ = LabelTensor(data, input_vars)
def test_constructor():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=2, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ["x"], branch_net2: ["x", "y"], trunk_net: ["z"]}
MIONet(networks=networks, reduction="+", aggregator="*")
def test_constructor_fails_when_invalid_inner_layer_size():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=2, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=12)
networks = {branch_net1: ["x"], branch_net2: ["x", "y"], trunk_net: ["z"]}
with pytest.raises(ValueError):
MIONet(networks=networks, reduction="+", aggregator="*")
def test_forward_extract_str():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ["a"], branch_net2: ["b"], trunk_net: ["c"]}
model = MIONet(networks=networks, reduction="+", aggregator="*")
model(input_)
def test_backward_extract_str():
data = torch.rand((20, 3))
data.requires_grad = True
input_vars = ["a", "b", "c"]
input_ = LabelTensor(data, input_vars)
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ["a"], branch_net2: ["b"], trunk_net: ["c"]}
model = MIONet(networks=networks, reduction="+", aggregator="*")
model(input_)
l = torch.mean(model(input_))
l.backward()
assert data._grad.shape == torch.Size([20, 3])
def test_forward_extract_int():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: [0], branch_net2: [1], trunk_net: [2]}
model = MIONet(networks=networks, reduction="+", aggregator="*")
model(data)
def test_backward_extract_int():
data = torch.rand((20, 3))
data.requires_grad = True
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: [0], branch_net2: [1], trunk_net: [2]}
model = MIONet(networks=networks, reduction="+", aggregator="*")
model(data)
l = torch.mean(model(data))
l.backward()
assert data._grad.shape == torch.Size([20, 3])
def test_forward_extract_str_wrong():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ["a"], branch_net2: ["b"], trunk_net: ["c"]}
model = MIONet(networks=networks, reduction="+", aggregator="*")
with pytest.raises(RuntimeError):
model(data)
def test_backward_extract_str_wrong():
data = torch.rand((20, 3))
data.requires_grad = True
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ["a"], branch_net2: ["b"], trunk_net: ["c"]}
model = MIONet(networks=networks, reduction="+", aggregator="*")
with pytest.raises(RuntimeError):
model(data)
l = torch.mean(model(data))
l.backward()
assert data._grad.shape == torch.Size([20, 3])