Files
PINA/pina/deep_feed_forward.py
2022-01-27 14:55:42 +01:00

82 lines
2.5 KiB
Python

import torch
import torch.nn as nn
import numpy as np
from .cube import Cube
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
from torch.nn import Tanh, ReLU
#import torch.nn.utils.prune as prune
from pina.adaptive_functions import AdaptiveLinear
from pina.label_tensor import LabelTensor
class DeepFeedForward(torch.nn.Module):
def __init__(self,
inner_size=20,
n_layers=2,
func=nn.Tanh,
input_variables=None,
output_variables=None,
layers=None,
extra_features=None):
'''
'''
super(DeepFeedForward, self).__init__()
if extra_features is None:
extra_features = []
self.extra_features = nn.Sequential(*extra_features)
if input_variables is None: input_variables = ['x']
if output_variables is None: input_variables = ['y']
self.input_variables = input_variables
self.input_dimension = len(input_variables)
self.output_variables = output_variables
self.output_dimension = len(output_variables)
n_features = len(extra_features)
if layers is None: layers = [inner_size] * n_layers
tmp_layers = layers.copy()
tmp_layers.insert(0, self.input_dimension+n_features)#-1)
tmp_layers.append(self.output_dimension)
self.layers = []
for i in range(len(tmp_layers)-1):
self.layers.append(nn.Linear(tmp_layers[i], tmp_layers[i+1]))
if isinstance(func, list):
self.functions = func
else:
self.functions = [func for _ in range(len(self.layers)-1)]
unique_list = []
for layer, func in zip(self.layers[:-1], self.functions):
unique_list.append(layer)
if func is not None: unique_list.append(func())
unique_list.append(self.layers[-1])
self.model = nn.Sequential(*unique_list)
def forward(self, x):
nf = len(self.extra_features)
if nf == 0:
return LabelTensor(self.model(x), self.output_variables)
# if self.extra_features
#input_ = torch.zeros(x.shape[0], nf+self.input_dimension, dtype=x.dtype, device=x.device)
input_ = torch.zeros(x.shape[0], nf+x.shape[1], dtype=x.dtype, device=x.device)
input_[:, :x.shape[1]] = x
for i, feature in enumerate(self.extra_features, start=self.input_dimension):
input_[:, i] = feature(x)
return LabelTensor(self.model(input_), self.output_variables)